A Semisolvated Sole-Solvent Electrolyte for High-Voltage Lithium Metal Batteries

Lithium metal batteries (LMBs) coupled with a high-voltage Ni-rich cathode are promising for meeting the increasing demand for high energy density. However, aggressive electrode chemistry imposes ultimate requirements on the electrolytes used. Among the various optimized electrolytes investigated, l...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 145; no. 44; pp. 24260 - 24271
Main Authors Piao, Zhihong, Wu, Xinru, Ren, Hong-Rui, Lu, Gongxun, Gao, Runhua, Zhou, Guangmin, Cheng, Hui-Ming
Format Journal Article
LanguageEnglish
Published American Chemical Society 08.11.2023
Online AccessGet full text

Cover

Loading…
More Information
Summary:Lithium metal batteries (LMBs) coupled with a high-voltage Ni-rich cathode are promising for meeting the increasing demand for high energy density. However, aggressive electrode chemistry imposes ultimate requirements on the electrolytes used. Among the various optimized electrolytes investigated, localized high-concentration electrolytes (LHCEs) have excellent reversibility against a lithium metal anode. However, because they consist of thermally and electrochemically unstable solvents, they have inferior stability at elevated temperatures and high cutoff voltages. Here we report a semisolvated sole-solvent electrolyte to construct a typical LHCE solvation structure but with significantly improved stability using one bifunctional solvent. The designed electrolyte exhibits exceptional stability against both electrodes with suppressed lithium dendrite growth, phase transition, microcracking, and transition metal dissolution. A Li||Ni0.8Co0.1Mn0.1O2 cell with this electrolyte operates stably over a wide temperature range from −20 to 60 °C and has a high capacity retention of 95.6% after the 100th cycle at 4.7 V, and ∼80% of the initial capacity is retained even after 180 cycles. This new electrolyte indicates a new path toward future electrolyte engineering and safe high-voltage LMBs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.3c08733