Shining at the Tips: Anisotropic Deposition of Pt Nanoparticles Boosting Hot Carrier Utilization for Plasmon-Driven Photocatalysis

Bimetallic nanostructures are a promising candidate for plasmon-driven photocatalysis. However, knowledge on the generation and utilization of hot carriers in bimetallic nanostructures is still limited. In this work, we explored Pt position-dependent photocatalytic properties of bimetallic Au nanobi...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 144; no. 28; pp. 12842 - 12849
Main Authors Chen, Mengtian, Ye, Zhongju, Wei, Lin, Yuan, Jie, Xiao, Lehui
Format Journal Article
LanguageEnglish
Published American Chemical Society 20.07.2022
Online AccessGet full text

Cover

Loading…
More Information
Summary:Bimetallic nanostructures are a promising candidate for plasmon-driven photocatalysis. However, knowledge on the generation and utilization of hot carriers in bimetallic nanostructures is still limited. In this work, we explored Pt position-dependent photocatalytic properties of bimetallic Au nanobipyramids (Au NBPs) with single-molecule fluorescence imaging. Compared with all-deposited core–shell nanostructures (aPt-Au NBPs), single-molecule imaging and simulation results show that the end-deposited bimetallic nanostructures (ePt-Au NBPs) can maintain a strong electromagnetic (EM) field and further promote the generation and transfer of energetic hot electrons for photocatalysis. Even though the Pt lattice is more stable than Au, the strong EM field at the sharp tips can boost lattice vibration, where enhanced spontaneous surface restructuring for active reaction site generation takes place. Significantly enhanced catalytic efficiency from ePt-Au NBPs is observed in contrast to that of Au NBPs and aPt-Au NBPs. These microscopic evidences offer valuable guidelines to design plasmon-based photocatalysts, particularly for bimetallic nanostructures.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.2c04202