New Alloy of an Al-Chalcogen System: AlSe Surface Alloys on Al(111)
Metal chalcogenides are a promising material for novel physical research and nanoelectronic device applications. Here, we systematically investigate the crystal structure and electronic properties of AlSe alloys on Al(111) using scanning tunneling microscopy, angle-resolved photoelectron spectrometr...
Saved in:
Published in | ACS omega Vol. 7; no. 49; pp. 45174 - 45180 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
13.12.2022
|
Online Access | Get full text |
Cover
Loading…
Summary: | Metal chalcogenides are a promising material for novel physical research and nanoelectronic device applications. Here, we systematically investigate the crystal structure and electronic properties of AlSe alloys on Al(111) using scanning tunneling microscopy, angle-resolved photoelectron spectrometry, and first-principle calculations. We reveal that the AlSe surface alloy possesses a closed-packed atomic structure. The AlSe surface alloy comprises two atomic sublayers (Se sublayer and Al sublayer) with a height difference of 1.16 Å. Our results indicate that the AlSe alloy hosts two hole-like bands, which are mainly derived from the in-plane orbital of AlSe (p x and p y ). These two bands located at about −2.22 ±0.01 eV around the Gamma point, far below the Fermi level, distinguished from other metal chalcogenides and binary alloys. AlSe alloys have the advantages of large-scale atomic flat terraces and a wide band gap, appropriate to serve as an interface layer for two-dimensional materials. Meanwhile, our results provide implications for related Al-chalcogen interfaces. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.2c05606 |