Experimental and Theoretical Study of Bi2O2Se Under Compression
We report a joint experimental and theoretical study of the structural, vibrational, elastic, optical, and electronic properties of the layered high-mobility semiconductor Bi2O2Se at high pressure. A good agreement between experiments and ab initio calculations is observed for the equation of state,...
Saved in:
Published in | Journal of physical chemistry. C Vol. 122; no. 16; pp. 8853 - 8867 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
26.04.2018
|
Online Access | Get full text |
Cover
Loading…
Summary: | We report a joint experimental and theoretical study of the structural, vibrational, elastic, optical, and electronic properties of the layered high-mobility semiconductor Bi2O2Se at high pressure. A good agreement between experiments and ab initio calculations is observed for the equation of state, the pressure coefficients of the Raman-active modes and the bandgap of the material. In particular, a detailed description of the vibrational properties is provided. Unlike other Sillén-type compounds which undergo a tetragonal to collapsed tetragonal pressure-induced phase transition at relatively low pressures, Bi2O2Se shows a remarkable structural stability up to 30 GPa; however, our results indicate that this compound exhibits considerable electronic changes around 4 GPa, likely related to the progressive shortening and hardening of the long and weak Bi–Se bonds linking the Bi2O2 and Se atomic layers. Variations of the structural, vibrational, and electronic properties induced by these electronic changes are discussed. |
---|---|
ISSN: | 1932-7447 1932-7455 |
DOI: | 10.1021/acs.jpcc.8b02194 |