Green Synthesis of Pseudocoherent Fluoride Cathode Materials from Wastes
Due to fluorine’s high electronegativity, which facilitates the highest discharge plateau and exceptional energy density, transition metal fluorides (TMFs) are considered one of the most promising cathode materials for lithium-ion batteries. However, the complexity and toxicity of the synthesis proc...
Saved in:
Published in | Nano letters Vol. 25; no. 24; pp. 9543 - 9550 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
18.06.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Due to fluorine’s high electronegativity, which facilitates the highest discharge plateau and exceptional energy density, transition metal fluorides (TMFs) are considered one of the most promising cathode materials for lithium-ion batteries. However, the complexity and toxicity of the synthesis process as well as the durability of TMFs hinder their wide application. Herein, we present a green synthesis strategy of iron fluorides (FeF x ), utilizing recycled polytetrafluoroethylene as fluorine source, combined with Fe powder through mechanochemical ball-milling at ambient conditions (35 °C). Benefiting from the coupling reaction between pseudocoherent FeF x and semi-ionic CF y , the resulting FeF x -CF y cathode delivers an impressive capacity of 240.0 mAh g–1 and maintains 76.2% after 2000 cycles at 1C, obviously surpassing the prevailing LiNi0.8Co0.1Mn0.1O2 and LiFePO4 cathodes. This work not only introduces a sustainable strategy for synthesizing high-performance and high value-added fluorides under mild conditions but also contributes to waste recycling. |
---|---|
AbstractList | Due to fluorine's high electronegativity, which facilitates the highest discharge plateau and exceptional energy density, transition metal fluorides (TMFs) are considered one of the most promising cathode materials for lithium-ion batteries. However, the complexity and toxicity of the synthesis process as well as the durability of TMFs hinder their wide application. Herein, we present a green synthesis strategy of iron fluorides (FeF
), utilizing recycled polytetrafluoroethylene as fluorine source, combined with Fe powder through mechanochemical ball-milling at ambient conditions (35 °C). Benefiting from the coupling reaction between pseudocoherent FeF
and semi-ionic CF
, the resulting FeF
-CF
cathode delivers an impressive capacity of 240.0 mAh g
and maintains 76.2% after 2000 cycles at 1C, obviously surpassing the prevailing LiNi
Co
Mn
O
and LiFePO
cathodes. This work not only introduces a sustainable strategy for synthesizing high-performance and high value-added fluorides under mild conditions but also contributes to waste recycling. Due to fluorine’s high electronegativity, which facilitates the highest discharge plateau and exceptional energy density, transition metal fluorides (TMFs) are considered one of the most promising cathode materials for lithium-ion batteries. However, the complexity and toxicity of the synthesis process as well as the durability of TMFs hinder their wide application. Herein, we present a green synthesis strategy of iron fluorides (FeF x ), utilizing recycled polytetrafluoroethylene as fluorine source, combined with Fe powder through mechanochemical ball-milling at ambient conditions (35 °C). Benefiting from the coupling reaction between pseudocoherent FeF x and semi-ionic CF y , the resulting FeF x -CF y cathode delivers an impressive capacity of 240.0 mAh g–1 and maintains 76.2% after 2000 cycles at 1C, obviously surpassing the prevailing LiNi0.8Co0.1Mn0.1O2 and LiFePO4 cathodes. This work not only introduces a sustainable strategy for synthesizing high-performance and high value-added fluorides under mild conditions but also contributes to waste recycling. Due to fluorine's high electronegativity, which facilitates the highest discharge plateau and exceptional energy density, transition metal fluorides (TMFs) are considered one of the most promising cathode materials for lithium-ion batteries. However, the complexity and toxicity of the synthesis process as well as the durability of TMFs hinder their wide application. Herein, we present a green synthesis strategy of iron fluorides (FeFx), utilizing recycled polytetrafluoroethylene as fluorine source, combined with Fe powder through mechanochemical ball-milling at ambient conditions (35 °C). Benefiting from the coupling reaction between pseudocoherent FeFx and semi-ionic CFy, the resulting FeFx-CFy cathode delivers an impressive capacity of 240.0 mAh g-1 and maintains 76.2% after 2000 cycles at 1C, obviously surpassing the prevailing LiNi0.8Co0.1Mn0.1O2 and LiFePO4 cathodes. This work not only introduces a sustainable strategy for synthesizing high-performance and high value-added fluorides under mild conditions but also contributes to waste recycling.Due to fluorine's high electronegativity, which facilitates the highest discharge plateau and exceptional energy density, transition metal fluorides (TMFs) are considered one of the most promising cathode materials for lithium-ion batteries. However, the complexity and toxicity of the synthesis process as well as the durability of TMFs hinder their wide application. Herein, we present a green synthesis strategy of iron fluorides (FeFx), utilizing recycled polytetrafluoroethylene as fluorine source, combined with Fe powder through mechanochemical ball-milling at ambient conditions (35 °C). Benefiting from the coupling reaction between pseudocoherent FeFx and semi-ionic CFy, the resulting FeFx-CFy cathode delivers an impressive capacity of 240.0 mAh g-1 and maintains 76.2% after 2000 cycles at 1C, obviously surpassing the prevailing LiNi0.8Co0.1Mn0.1O2 and LiFePO4 cathodes. This work not only introduces a sustainable strategy for synthesizing high-performance and high value-added fluorides under mild conditions but also contributes to waste recycling. |
Author | Ma, Yue Gu, Ruiqian Yao, Rui-Qi Lang, Xing-You Li, Yumeng Li, Yingqi Shi, Hang Han, Gao-Feng Jiang, Qing Zhao, Yingnan Zhou, Xianggang Wang, Tong-Hui |
AuthorAffiliation | Key Laboratory of Polyoxometalate and Reticular Material Chemistry, Ministry of Education, Faculty of Chemistry Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering |
AuthorAffiliation_xml | – name: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering – name: Key Laboratory of Polyoxometalate and Reticular Material Chemistry, Ministry of Education, Faculty of Chemistry |
Author_xml | – sequence: 1 givenname: Yue surname: Ma fullname: Ma, Yue organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering – sequence: 2 givenname: Yingnan surname: Zhao fullname: Zhao, Yingnan organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering – sequence: 3 givenname: Xianggang surname: Zhou fullname: Zhou, Xianggang organization: Key Laboratory of Polyoxometalate and Reticular Material Chemistry, Ministry of Education, Faculty of Chemistry – sequence: 4 givenname: Yingqi orcidid: 0000-0002-2300-3023 surname: Li fullname: Li, Yingqi email: liyq164@nenu.edu.cn organization: Key Laboratory of Polyoxometalate and Reticular Material Chemistry, Ministry of Education, Faculty of Chemistry – sequence: 5 givenname: Ruiqian surname: Gu fullname: Gu, Ruiqian organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering – sequence: 6 givenname: Yumeng surname: Li fullname: Li, Yumeng organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering – sequence: 7 givenname: Rui-Qi surname: Yao fullname: Yao, Rui-Qi organization: Key Laboratory of Polyoxometalate and Reticular Material Chemistry, Ministry of Education, Faculty of Chemistry – sequence: 8 givenname: Hang surname: Shi fullname: Shi, Hang organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering – sequence: 9 givenname: Tong-Hui surname: Wang fullname: Wang, Tong-Hui organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering – sequence: 10 givenname: Gao-Feng orcidid: 0000-0001-5943-0492 surname: Han fullname: Han, Gao-Feng email: gfhan@jlu.edu.cn organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering – sequence: 11 givenname: Xing-You orcidid: 0000-0002-8227-9695 surname: Lang fullname: Lang, Xing-You email: xylang@jlu.edu.cn organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering – sequence: 12 givenname: Qing orcidid: 0000-0003-0660-596X surname: Jiang fullname: Jiang, Qing email: jiangq@jlu.edu.cn organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40470920$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kEFLAzEQhYNUrFb_gcgevWydZJPdzVGKVUFRUPG4pMksXdlNapI99N8baevR0xtmvjfw3hmZWGeRkEsKcwqM3igd5lZZ12OMc6EBeC2PyCkVBeSllGzyN9d8Ss5C-AIAWQg4IVMOvALJ4JQ83HtEm71tbVxj6ELm2uw14Gicdmv0aGO27EfnO4PZQsW1S_qsIvpO9SFrvRuyTxUihnNy3KYVXux1Rj6Wd--Lh_zp5f5xcfuUKyZlzHXVlkgL0RpmqtJUjCumK6llWVdC1NpwEBJWWJW8MAi1kImmjJacrkyCihm53v3dePc9YojN0AWNfa8sujE0BaNCSqAFS-jVHh1XA5pm47tB-W1zSJ8AvgO0dyF4bP8QCs1vyU0quTmU3OxLTjbY2X6vX270NgX-3_IDix6CMg |
Cites_doi | 10.1039/D2CS00763K 10.1038/s41467-023-40915-5 10.1002/anie.202001703 10.1002/adma.201002879 10.1002/anie.202307054 10.1016/j.cej.2024.154240 10.1038/s41563-020-00893-1 10.1016/j.jfluchem.2016.10.003 10.1016/j.nanoen.2017.07.016 10.1038/s41586-022-04863-2 10.1038/s41563-019-0472-7 10.1038/35085548 10.1038/s44160-022-00106-4 10.1002/anie.201915279 10.1039/C7CS00863E 10.1038/s41467-018-04476-2 10.1038/nmat3577 10.1039/C7TA00862G 10.1002/aenm.201401148 10.1038/srep42237 10.1126/science.aav5842 10.1021/acs.chemrev.3c00826 10.1021/jacs.7b06123 10.1002/adfm.201701051 10.1039/C9EE03549D 10.1038/ncomms7668 10.1021/acssuschemeng.1c02270 10.1126/sciadv.adf4589 10.1021/acs.est.2c02251 10.1039/D3EE01647A 10.1002/chem.201800207 10.1038/s41467-018-04248-y 10.1002/cjoc.201600229 10.1038/s41467-024-45077-6 10.1039/C2TA00823H 10.1038/s41578-023-00623-4 10.1021/nn1035608 10.1038/s41467-023-37989-6 10.1016/j.cej.2022.139964 10.1038/s41467-023-38724-x 10.1038/s41563-020-0621-z 10.1126/science.adi1557 10.1002/aenm.201200209 10.1016/j.jcis.2023.06.108 10.1007/s12598-024-02951-y 10.1002/adma.202108327 10.1126/science.abg9065 10.1021/jacs.3c11009 10.1021/jacs.6b00061 10.1038/s41467-021-23132-w 10.1021/ja902639w 10.1126/science.aay8224 10.1016/j.jfluchem.2019.05.007 10.1016/j.cej.2021.130358 10.1016/j.nanoen.2021.106655 10.1016/j.jallcom.2012.03.080 10.1021/acs.chemrev.8b00458 |
ContentType | Journal Article |
Copyright | 2025 American Chemical Society |
Copyright_xml | – notice: 2025 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acs.nanolett.5c00489 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1530-6992 |
EndPage | 9550 |
ExternalDocumentID | 40470920 10_1021_acs_nanolett_5c00489 d258471800 |
Genre | Journal Article |
GroupedDBID | --- -~X .K2 123 4.4 55A 5VS 6P2 7~N AABXI AAHBH ABBLG ABJNI ABLBI ABMVS ABQRX ABUCX ACBEA ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 CUPRZ DU5 EBS ED~ F5P GGK GNL IH9 IHE JG~ RNS ROL TN5 UI2 VF5 VG9 W1F AAYXX CITATION NPM 7X8 |
ID | FETCH-LOGICAL-a299t-c7f6e135fd2d76d724a2c79c9687558cd40590be7643de0859e13121641bd9683 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Thu Jun 05 17:32:08 EDT 2025 Thu Jun 19 02:16:00 EDT 2025 Thu Jul 03 08:37:09 EDT 2025 Thu Jun 19 03:12:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | metal fluorides lithium-ion batteries green synthesis sustainability plastics |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a299t-c7f6e135fd2d76d724a2c79c9687558cd40590be7643de0859e13121641bd9683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2300-3023 0000-0003-0660-596X 0000-0002-8227-9695 0000-0001-5943-0492 |
PMID | 40470920 |
PQID | 3215990132 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_3215990132 pubmed_primary_40470920 crossref_primary_10_1021_acs_nanolett_5c00489 acs_journals_10_1021_acs_nanolett_5c00489 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-18 |
PublicationDateYYYYMMDD | 2025-06-18 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2025 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref7/cit7 doi: 10.1039/D2CS00763K – ident: ref13/cit13 doi: 10.1038/s41467-023-40915-5 – ident: ref32/cit32 doi: 10.1002/anie.202001703 – ident: ref43/cit43 doi: 10.1002/adma.201002879 – ident: ref18/cit18 doi: 10.1002/anie.202307054 – ident: ref3/cit3 doi: 10.1016/j.cej.2024.154240 – ident: ref36/cit36 doi: 10.1038/s41563-020-00893-1 – ident: ref48/cit48 doi: 10.1016/j.jfluchem.2016.10.003 – ident: ref56/cit56 doi: 10.1016/j.nanoen.2017.07.016 – ident: ref34/cit34 doi: 10.1038/s41586-022-04863-2 – ident: ref38/cit38 doi: 10.1038/s41563-019-0472-7 – ident: ref8/cit8 doi: 10.1038/35085548 – ident: ref17/cit17 doi: 10.1038/s44160-022-00106-4 – ident: ref29/cit29 doi: 10.1002/anie.201915279 – ident: ref1/cit1 doi: 10.1039/C7CS00863E – ident: ref37/cit37 doi: 10.1038/s41467-018-04476-2 – ident: ref25/cit25 doi: 10.1038/nmat3577 – ident: ref52/cit52 doi: 10.1039/C7TA00862G – ident: ref41/cit41 doi: 10.1002/aenm.201401148 – ident: ref44/cit44 doi: 10.1038/srep42237 – ident: ref20/cit20 doi: 10.1126/science.aav5842 – ident: ref30/cit30 doi: 10.1021/acs.chemrev.3c00826 – ident: ref31/cit31 doi: 10.1021/jacs.7b06123 – ident: ref53/cit53 doi: 10.1002/adfm.201701051 – ident: ref33/cit33 doi: 10.1039/C9EE03549D – ident: ref2/cit2 doi: 10.1038/ncomms7668 – ident: ref15/cit15 doi: 10.1021/acssuschemeng.1c02270 – ident: ref55/cit55 doi: 10.1126/sciadv.adf4589 – ident: ref10/cit10 doi: 10.1021/acs.est.2c02251 – ident: ref5/cit5 doi: 10.1039/D3EE01647A – ident: ref54/cit54 doi: 10.1002/chem.201800207 – ident: ref26/cit26 doi: 10.1038/s41467-018-04248-y – ident: ref50/cit50 doi: 10.1002/cjoc.201600229 – ident: ref6/cit6 doi: 10.1038/s41467-024-45077-6 – ident: ref51/cit51 doi: 10.1039/C2TA00823H – ident: ref12/cit12 doi: 10.1038/s41578-023-00623-4 – ident: ref42/cit42 doi: 10.1021/nn1035608 – ident: ref57/cit57 doi: 10.1038/s41467-023-37989-6 – ident: ref9/cit9 doi: 10.1016/j.cej.2022.139964 – ident: ref22/cit22 doi: 10.1038/s41467-023-38724-x – ident: ref39/cit39 doi: 10.1038/s41563-020-0621-z – ident: ref23/cit23 doi: 10.1126/science.adi1557 – ident: ref40/cit40 doi: 10.1002/aenm.201200209 – ident: ref27/cit27 doi: 10.1016/j.jcis.2023.06.108 – ident: ref45/cit45 doi: 10.1007/s12598-024-02951-y – ident: ref16/cit16 doi: 10.1002/adma.202108327 – ident: ref11/cit11 doi: 10.1126/science.abg9065 – ident: ref28/cit28 doi: 10.1021/jacs.3c11009 – ident: ref21/cit21 doi: 10.1021/jacs.6b00061 – ident: ref14/cit14 doi: 10.1038/s41467-021-23132-w – ident: ref35/cit35 doi: 10.1021/ja902639w – ident: ref19/cit19 doi: 10.1126/science.aay8224 – ident: ref47/cit47 doi: 10.1016/j.jfluchem.2019.05.007 – ident: ref24/cit24 doi: 10.1016/j.cej.2021.130358 – ident: ref46/cit46 doi: 10.1016/j.nanoen.2021.106655 – ident: ref49/cit49 doi: 10.1016/j.jallcom.2012.03.080 – ident: ref4/cit4 doi: 10.1021/acs.chemrev.8b00458 |
SSID | ssj0009350 |
Score | 2.4809902 |
Snippet | Due to fluorine’s high electronegativity, which facilitates the highest discharge plateau and exceptional energy density, transition metal fluorides (TMFs) are... Due to fluorine's high electronegativity, which facilitates the highest discharge plateau and exceptional energy density, transition metal fluorides (TMFs) are... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 9543 |
Title | Green Synthesis of Pseudocoherent Fluoride Cathode Materials from Wastes |
URI | http://dx.doi.org/10.1021/acs.nanolett.5c00489 https://www.ncbi.nlm.nih.gov/pubmed/40470920 https://www.proquest.com/docview/3215990132 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFA46XvTgvowbEbx4SG3TdDvK4DAIo8I46K2kSYqD0si0Peiv96WL48KgngrlEZK38L7w8r2H0KlDHdPlziYJSxRhoaAkklQQyH22pEyqwDXk5OG1PxizqwfvYXZR_F7Bp845F7mV8UzDMQrLE8blokW0RH2IYwOFeqNZk123msgKQQxXoihkLVVuziomIYn8a0KagzKrbNNfQzctZ6d-ZPJklUViibefLRz_eJB1tNoAT3xRe8oGWlDZJlr51I5wCw2qRzh49JoBKswnOdYpvs1VKbXQj4YWWOD-c6mnE6mwYQ5q-A55UfswNkQVfM_Ba_JtNO5f3vUGpJm0QDiko4KIIPWV43qppDLwZUAZpyKIRARK9jwz38hwVBMVAH6RyvREA2kws8-cRIKQu4M6mc7UHsKhnaaRtGXoOykD9MGZzX0v4AC1lJtK0UVnoIi4iZQ8rorg1InNz1Y7caOdLiKtaeKXuvnGL_Inrf1iiBJT-uCZ0mUeu4BsTAXQpV20Wxv2Y0Vms8COqL3_j50doGVqBgGbIUbhIeoU01IdATopkuPKJd8BoIrf7Q |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSyQxEC58HNTD-tbZ9RHBi4ceu9Pp13EYHGZXRwSftyadpHHYpVtM92H99Vb1TPsCEU-BEEKSqlBfqHxfARx63COVO9fJRGYcESvuJJorB2Ofq7nQJvKJnDw6D4fX4s9dcDcDQcuFwUVYnMk2SfxXdQHvmPoKWZS4m6obKPK8ZBbmEY9wcuxe__JVa9dvCrPiXcaXURKLljH3ySwUl5R9H5c-AZtN0Bksw83Lcpu_Jn-7dZV11dMHJcdv72cFfkxhKOtN_GYVZkyxBktvxAnXYdh8yWGX_wvEiHZsWZmzC2tqXarynkiCFRv8q8vHsTaMeIQltiNZTTyaEW2F3Ur0IbsB14OTq_7QmdZdcCQGp8pRUR4azw9yzXUU6ogLyVWUqCTEx01A1Y6IsZqZCNGMNqSQhqPR6KHwMo2D_E2YK8rCbAOL3TxPtKvj0MsFYhEpXBkGkUTgZfxcqw4c4UGk03tj0yYlzr2UOtvTSaen0wGntVD6MJHi-GL8QWvGFO8MJUJkYcrapj7iHMoH-rwDWxP7vswoXBG5CXd_fmNl-7AwvBqdpWe_z09_wSKnEsFU3ijegbnqsTa7iFuqbK_x0mcA8OhO |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8UwEB5cQPTgvjzXCF489NmmeV2Ooj6eK4KK4qWkSYqitGLag_56Z_r63EBET4EQhiQzw3xhMt8AbHncI5Y710lFahwRKe7EmisHY5-rudAm9Kk4-fQs6F2Jo5vOzadWX7gJi5JsncQnr37SWcMw4O3QfC7zAk9UtjuKrC8ehlHK3JFx7-5dfPDt-nVzVvRnfB3FkRhUzf0ghWKTsl9j0w-Asw483Sm4fd9y_d_koV2VaVu9fmNz_NeZpmGygaNst28_MzBk8lmY-ERSOAe9-msOu3jJESvae8uKjJ1bU-lCFXdULFiy7mNVPN9rw6iesMDxVJZ9y2ZUvsKuJdqSnYer7sHlXs9p-i84EoNU6agwC4zndzLNdRjokAvJVRirOMBHToe6HlHlampCRDXaEFMarkblB8JLNS7yF2AkL3KzBCxysyzWro4CLxOISaRwJWpNIgAzfqZVC7bxIpLGf2xSp8a5l9Dk4HaS5nZa4Ay0lDz1KTl-Wb85UGWCvkMJEZmborKJj3iH8oI-b8FiX8fvEoUrQjfm7vIfdrYBY-f73eTk8Ox4BcY5dQqmLkfRKoyUz5VZQ_hSpuu1ob4BlJjq0Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Green+Synthesis+of+Pseudocoherent+Fluoride+Cathode+Materials+from+Wastes&rft.jtitle=Nano+letters&rft.au=Ma%2C+Yue&rft.au=Zhao%2C+Yingnan&rft.au=Zhou%2C+Xianggang&rft.au=Li%2C+Yingqi&rft.date=2025-06-18&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=25&rft.issue=24&rft.spage=9543&rft.epage=9550&rft_id=info:doi/10.1021%2Facs.nanolett.5c00489&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_nanolett_5c00489 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |