Green Synthesis of Pseudocoherent Fluoride Cathode Materials from Wastes
Due to fluorine’s high electronegativity, which facilitates the highest discharge plateau and exceptional energy density, transition metal fluorides (TMFs) are considered one of the most promising cathode materials for lithium-ion batteries. However, the complexity and toxicity of the synthesis proc...
Saved in:
Published in | Nano letters Vol. 25; no. 24; pp. 9543 - 9550 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
18.06.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Due to fluorine’s high electronegativity, which facilitates the highest discharge plateau and exceptional energy density, transition metal fluorides (TMFs) are considered one of the most promising cathode materials for lithium-ion batteries. However, the complexity and toxicity of the synthesis process as well as the durability of TMFs hinder their wide application. Herein, we present a green synthesis strategy of iron fluorides (FeF x ), utilizing recycled polytetrafluoroethylene as fluorine source, combined with Fe powder through mechanochemical ball-milling at ambient conditions (35 °C). Benefiting from the coupling reaction between pseudocoherent FeF x and semi-ionic CF y , the resulting FeF x -CF y cathode delivers an impressive capacity of 240.0 mAh g–1 and maintains 76.2% after 2000 cycles at 1C, obviously surpassing the prevailing LiNi0.8Co0.1Mn0.1O2 and LiFePO4 cathodes. This work not only introduces a sustainable strategy for synthesizing high-performance and high value-added fluorides under mild conditions but also contributes to waste recycling. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1530-6984 1530-6992 1530-6992 |
DOI: | 10.1021/acs.nanolett.5c00489 |