Effects of Environmental and Clinical Interferents on the Host Capture Efficiency of Immobilized Bacteriophages
Bacteriophage-functionalized surfaces are a new class of advanced functional material and have been demonstrated to be applicable for use as antimicrobial surfaces in medical applications (e.g., indwelling medical devices or wound dressings) or as biosensors for bacterial capture and detection. Howe...
Saved in:
Published in | Langmuir Vol. 30; no. 11; pp. 3184 - 3190 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
25.03.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Bacteriophage-functionalized surfaces are a new class of advanced functional material and have been demonstrated to be applicable for use as antimicrobial surfaces in medical applications (e.g., indwelling medical devices or wound dressings) or as biosensors for bacterial capture and detection. However, the complex composition of many real life samples (e.g., blood, natural waters, etc.) can potentially interfere with the interaction of phage and its bacterial host, leading to a decline in the efficiency of the phage-functionalized surface. In this study, the bacterial capture efficiency of two model phage-functionalized surfaces was assessed in the presence of potential environmental and biomedical interferents. The two phage–bacteria systems used in this study are PRD1 with Salmonella Typhimurium and T4 with Escherichia coli. The potential interferents tested included humic and fulvic acids, natural groundwater, colloidal latex microspheres, host extracellular polymeric substances (EPS), albumin, fibrinogen, and human serum. EPS and human serum decreased the host capture efficiency for immobilized PRD1 and T4, and also impaired the infectivity of the nonimmobilized (planktonic) phage. Interestingly, humic and fulvic acids reduced the capture efficiency of T4-functionalized surfaces, even though they did not lead to inactivation of the suspended virions. Neither humic nor fulvic acids affected the capture efficiency of PRD1. These findings demonstrate the inadequacy of traditional phage selection methods (i.e., infectivity of suspended phage toward its host in clean buffer) for designing advanced functional materials and further highlight the importance of taking into account the environmental conditions in which the immobilized phage is expected to function. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/la500059u |