Correlated Hybrid DNA Structures Explored by the oxDNA Model

Thermodynamically, perfect DNA hybridization can be formed between probes and their corresponding targets due to the favorable energy. However, this is not the case dynamically. Here, we use molecular dynamics (MD) simulations based on the oxDNA model to investigate the process of DNA microarray hyb...

Full description

Saved in:
Bibliographic Details
Published inLangmuir Vol. 40; no. 1; pp. 109 - 117
Main Authors Qiao, Ye-Peng, Ren, Chun-Lai
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 09.01.2024
Online AccessGet full text

Cover

Loading…
More Information
Summary:Thermodynamically, perfect DNA hybridization can be formed between probes and their corresponding targets due to the favorable energy. However, this is not the case dynamically. Here, we use molecular dynamics (MD) simulations based on the oxDNA model to investigate the process of DNA microarray hybridization. In general, correlated hybrid DNA structures are formed, including one probe associated with several targets as well as one target hybrid with multiple probes leading to the target-mediated hybridization. The formation of these two types of correlated structures largely depends on the surface coverage of the DNA microarray. Moreover, DNA sequence, DNA length, and spacer length have an impact on the structural formation. Our findings shed light on the dynamics of DNA hybridization, which is important for the application of DNA microarray.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0743-7463
1520-5827
DOI:10.1021/acs.langmuir.3c02231