Two-Pronged Strategy of Biomechanically Active and Biochemically Multifunctional Hydrogel Wound Dressing To Accelerate Wound Closure and Wound Healing
A two-pronged strategy of biomechanically active and biochemically functional hydrogel wound dressing which can assist wound closure and have multiple functions to promote wound healing has been rarely reported. Herein, we designed a series of biomechanically active injectable self-healing hydrogels...
Saved in:
Published in | Chemistry of materials Vol. 32; no. 23; pp. 9937 - 9953 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
08.12.2020
|
Online Access | Get full text |
Cover
Loading…
Summary: | A two-pronged strategy of biomechanically active and biochemically functional hydrogel wound dressing which can assist wound closure and have multiple functions to promote wound healing has been rarely reported. Herein, we designed a series of biomechanically active injectable self-healing hydrogels based on quaternized chitosan (QCS), polydopamine-coated reduction graphene oxide (rGO-PDA), and poly(N-isopropylacrylamide) (PNIPAm) as multifunctional wound dressings to promote wound closure and wound healing. These biomechanically active wound dressings have excellent thermoresponsive self-contraction and tissue adhesion properties. They adhere strongly to the skin and assist wound closure by actively contracting wounds through self-contraction. Moreover, these hydrogels exhibit biochemical multifunctions that are beneficial to wound healing, including good self-healing property, temperature-dependent drug release ability, anti-infection, antioxidation, and conductivity. The in vivo full-thickness skin defect model demonstrates that the hydrogel dressings significantly promoted wound closure with accelerated wound contraction and promoted the wound-healing process with higher granulation tissue thickness, collagen disposition, and enhanced vascularization. In summary, the biomechanically active injectable self-healing conductive adhesive hydrogels promoted wound healing by assisting wound closure and biochemical functions, opening a two-pronged strategy approach to wound management through combining biomechanical and biochemical functions together. |
---|---|
ISSN: | 0897-4756 1520-5002 |
DOI: | 10.1021/acs.chemmater.0c02823 |