Sub-millisecond Translational and Orientational Dynamics of a Freely Moving Single Nanoprobe
This paper presents a new experiment with which we are able to measure the 3D translational motion of a single particle at 10 μs time resolution and with ∼10 nm spatial resolution while at the same time determining the 3D orientation of the same single particle with 250 μs time resolution. These hig...
Saved in:
Published in | The journal of physical chemistry. B Vol. 125; no. 49; pp. 13436 - 13443 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
16.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper presents a new experiment with which we are able to measure the 3D translational motion of a single particle at 10 μs time resolution and with ∼10 nm spatial resolution while at the same time determining the 3D orientation of the same single particle with 250 μs time resolution. These high time resolutions are ∼40 times greater than previous simultaneous measurements of 3D position and 3D orientation. Detailed numerical simulations and experiments are used to demonstrate that the technique can measure 3D orientation at the shot-noise limit. The microscope is also able to simultaneously measure the length or width (with the other assumed) of the plasmonic nanorods used here in situ and nondestructively, which should yield a greater understanding of the underlying dynamics. This technique should be applicable to a broad range of problems where environments which change in space and time may perturb physical and chemical dynamics. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1520-6106 1520-5207 |
DOI: | 10.1021/acs.jpcb.1c08917 |