Enhancement of the d‑Allulose 3‑Epimerase Expression in Bacillus subtilis through Both Transcriptional and Translational Regulations

d-Allulose, a functional bulk sweetener, has recently attracted increasing attention because of its low-caloric-ness properties and diverse health effects. d-Allulose is industrially produced by the enzymatic epimerization of d-fructose, which is catalyzed by ketose 3-epimerase (KEase). In this stud...

Full description

Saved in:
Bibliographic Details
Published inJournal of agricultural and food chemistry Vol. 72; no. 14; pp. 8052 - 8059
Main Authors Zhang, Wenli, Ren, Hu, Chen, JiaJun, Ni, Dawei, Xu, Wei, Mu, Wanmeng
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 10.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:d-Allulose, a functional bulk sweetener, has recently attracted increasing attention because of its low-caloric-ness properties and diverse health effects. d-Allulose is industrially produced by the enzymatic epimerization of d-fructose, which is catalyzed by ketose 3-epimerase (KEase). In this study, the food-grade expression of KEase was studied using Bacillus subtills as the host. Clostridium sp. d-allulose 3-epimerase (Clsp-DAEase) was screened from nine d-allulose-producing KEases, showing better potential for expression in B. subtills WB600. Promoter-based transcriptional regulation and N-terminal coding sequence (NCS)-based translational regulation were studied to enhance the DAEase expression level. In addition, the synergistic effect of promoter and NCS on the Clsp-DAEase expression was studied. Finally, the strain with the combination of a P HapII promoter and gln A-Up NCS was selected as the best Clsp-DAEase-producing strain. It efficiently produced Clsp-DAEase with a total activity of 333.2 and 1860.6 U/mL by shake-flask and fed-batch cultivations, respectively.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.4c01122