First-Principles Investigations of Metal (Cu, Ag, Au, Pt, Rh, Pd, Fe, Co, and Ir) Doped Hexagonal Boron Nitride Nanosheets: Stability and Catalysis of CO Oxidation

By means of first-principles computation, metal (Cu, Ag, Au, Pt, Rh, Pd, Fe, Co, and Ir) doped hexagonal boron nitride nanosheets (h-BNNSs) have been systematically investigated. The strong interaction between the metal atoms and defect sites in h-BNNS, such as the boron vacancy and nitrogen edge, s...

Full description

Saved in:
Bibliographic Details
Published inJournal of physical chemistry. C Vol. 117; no. 33; pp. 17319 - 17326
Main Authors Lin, Sen, Ye, Xinxin, Johnson, Ryan S, Guo, Hua
Format Journal Article
LanguageEnglish
Published Columbus, OH American Chemical Society 22.08.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:By means of first-principles computation, metal (Cu, Ag, Au, Pt, Rh, Pd, Fe, Co, and Ir) doped hexagonal boron nitride nanosheets (h-BNNSs) have been systematically investigated. The strong interaction between the metal atoms and defect sites in h-BNNS, such as the boron vacancy and nitrogen edge, suggests that metal doped h-BN nanosheets (M-BNNSs) should be stable under high temperatures. The catalytic activity of Co doped h-BNNS is also investigated by using CO oxidation as a probe, and the calculated low barrier suggests that the Co-BNNS is a viable catalyst for CO oxidation. Based on electronic structure analysis, the catalytic capacity of Co-BNNS is attributed to the strong mixing between the cobalt 3d orbitals and oxygen 2p orbitals, which activates the adsorbed molecular or atomic oxygen.
ISSN:1932-7447
1932-7455
DOI:10.1021/jp4055445