Continuous Flow Chemo-Enzymatic Baeyer–Villiger Oxidation with Superactive and Extra-Stable Enzyme/Carbon Nanotube Catalyst: An Efficient Upgrade from Batch to Flow

Continuous flow chemo-enzymatic Baeyer–Villiger oxidation in the presence of exceptionally active Candida antarctica lipase B immobilized via simple physical adsorption on multiwalled carbon nanotubes has been investigated. The nanobiocatalyst was used to generate peracid in situ from ethyl acetate...

Full description

Saved in:
Bibliographic Details
Published inOrganic process research & development Vol. 23; no. 7; pp. 1386 - 1395
Main Authors Szelwicka, Anna, Zawadzki, Przemysław, Sitko, Magdalena, Boncel, Sławomir, Czardybon, Wojciech, Chrobok, Anna
Format Journal Article
LanguageEnglish
Published American Chemical Society 19.07.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Continuous flow chemo-enzymatic Baeyer–Villiger oxidation in the presence of exceptionally active Candida antarctica lipase B immobilized via simple physical adsorption on multiwalled carbon nanotubes has been investigated. The nanobiocatalyst was used to generate peracid in situ from ethyl acetate and 30 wt % aq. hydrogen peroxide as the primary oxidant. Application of the highly stable and active nanobiocatalyst in the Baeyer–Villiger oxidation of 2-methylcyclohexanone to 6-methyl-ε-caprolactone after 8 h at 40 °C led to a high product yield (87%) and selectivity (>99%). Environmentally friendly ethyl acetate was applied as both solvent and the peracid precursor. To determine the most favorable reaction conditions, a series of experiments using various parameters was performed. The main contribution of this work is that it describes the first application of the nanobiocatalyst in a chemo-enzymatic Baeyer–Villiger oxidation in a flow system. Since the process was performed in a flow reactor, many improvements were achieved. First of all, substantially shorter reaction times as well as a significant increase in the product yield were obtained as compared to the batch process. Since peracids are unstable, a large increase in the safety of the process was demonstrated under mild conditions in this work. In summary, this work shows a particularly efficient upgrade in the studied processes by transfer from a batch to a flow system.
ISSN:1083-6160
1520-586X
DOI:10.1021/acs.oprd.9b00132