SECRET: Smartly EnCRypted Energy efficienT non-volatile memories
Data persistence in emerging non-volatile memories (NVMs) poses a multitude of security vulnerabilities, motivating main memory encryption for data security. However, practical encryption algorithms demonstrate strong diffusion characteristics that increase cell flips, resulting in increased write e...
Saved in:
Published in | 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC) pp. 1 - 6 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
05.06.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Data persistence in emerging non-volatile memories (NVMs) poses a multitude of security vulnerabilities, motivating main memory encryption for data security. However, practical encryption algorithms demonstrate strong diffusion characteristics that increase cell flips, resulting in increased write energy/latency and reduced lifetime of NVMs. State-of-the-art security solutions have focused on reducing the encryption penalty (increased write energy/latency and reduced memory lifetime) in single-level cell (SLC) NVMs; however, the realization of low encryption penalty solutions for multi-/triple-level cell (MLC/TLC) secure NVMs remains an open area of research. This work synergistically integrates zero-based partial writes with XOR-based energy masking to realize Smartly EnCRypted Energy efficienT, i.e., SECRET MLC/TLC NVMs, without compromising the security of the underlying encryption technique. Our simulations on an MLC (TLC) resistive RAM (RRAM) architecture across SPEC CPU2006 workloads demonstrate that for 6.25% (7.84%) memory overhead, SECRET reduces write energy by 80% (63%), latency by 37% (49%), and improves memory lifetime by 63% (56%) over conventional advanced encryption standard-based (AES-based) counter mode encryption. |
---|---|
DOI: | 10.1145/2897937.2898087 |