Structure of n‑Alkyltrichlorosilane Monolayers on Si(100)/SiO2

The structure of n-alkyltrichlorosilane self-assembled monolayers (SAMs) of alkyl chain lengths n = 12, 14, 18, and 22 formed on the amorphous native oxide of silicon (100) has been investigated via angstrom-resolution surface X-ray scattering techniques, with particular focus on the proliferation o...

Full description

Saved in:
Bibliographic Details
Published inLangmuir Vol. 31; no. 43; pp. 11774 - 11780
Main Authors Steinrück, H.-G, Will, J, Magerl, A, Ocko, B. M
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 03.11.2015
Online AccessGet full text

Cover

Loading…
More Information
Summary:The structure of n-alkyltrichlorosilane self-assembled monolayers (SAMs) of alkyl chain lengths n = 12, 14, 18, and 22 formed on the amorphous native oxide of silicon (100) has been investigated via angstrom-resolution surface X-ray scattering techniques, with particular focus on the proliferation of lateral order along the molecules’ long axis. Grazing incidence diffraction shows that the monolayer is composed of hexagonally packed crystalline-like domains for n = 14, 18, and 22 with a lateral size of about 60 Å. However, Bragg rod analysis shows that ∼12 of the CH2 units are not included in the crystalline-like domains. We assign this, and the limited lateral crystallites’ size, to strain induced by the size mismatch between the optimal chain–chain and headgroup–headgroup spacings. Analysis of X-ray reflectivity profiles for n = 12, 14, and 22 shows that the density profile used to successfully model n = 18 provides an excellent fit where the analysis-derived parameters provide complementary structural information to the grazing incidence results.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0743-7463
1520-5827
DOI:10.1021/acs.langmuir.5b03091