Poly(Oxazoline)s with Tapered Minidendritic Side Groups as Models for the Design of Synthetic Macromolecules with Tertiary Structure. A Demonstration of the Limitations of Living Polymerization in the Design of 3-D Structures Based on Single Polymer Chains

The synthesis and living cationic ring-opening polymerization of 2-[3,4-bis(n-alkan-1-yloxy)phenyl]-2-oxazolines with alkan being tetradecan and pentadecan, i.e., (3,4) n G1-Oxz with n = 14 and 15, is described. The structural analysis of the resulting polymers with well-defined molecular weights an...

Full description

Saved in:
Bibliographic Details
Published inBiomacromolecules Vol. 2; no. 3; pp. 729 - 740
Main Authors Percec, Virgil, Holerca, Marian N, Uchida, Satoshi, Yeardley, Duncan J. P, Ungar, Goran
Format Journal Article
LanguageEnglish
Published WASHINGTON American Chemical Society 01.09.2001
Amer Chemical Soc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The synthesis and living cationic ring-opening polymerization of 2-[3,4-bis(n-alkan-1-yloxy)phenyl]-2-oxazolines with alkan being tetradecan and pentadecan, i.e., (3,4) n G1-Oxz with n = 14 and 15, is described. The structural analysis of the resulting polymers with well-defined molecular weights and narrow molecular weight distribution was carried out by a combination of techniques, including differential scanning calorimetry (DSC), thermal optical polarized microscopy (TOPM), and X-ray diffraction (XRD). At low molecular weights both polymers self-assemble into spherical supramolecules that self-organize into a Pm3̄n 3-D lattice while at high molecular weights they form cylindrical macromolecules that self-organize into a p6 mm 2-D hexagonal columnar lattice. Both polymers exhibit a 3-D shape change as a function of their degree of polymerization as was reported for the first time in a previous publication from our laboratory (Percec, V.; Ahn, C.-H; Ungar, G.; Yeardley, D. J. P.; Möller, M.; Sheiko, S. S. Nature (London) 1998, 391, 161). Since these polymers can be obtained via a living polymerization, a detailed mechanistic investigation of the influence of the degree of polymerization and molecular weight distribution on the formation of a 3-D spherical macromolecule from a single polymer chain, i.e., a tertiary structure, was possible. The experimental results have demonstrated that the synthesis of nonbiological macromolecules exhibiting tertiary structure is possible in at most a few percent of all macromolecules via living polymerization. This is the case even when macromolecules with very narrow molecular weight distributions and well-defined molecular weights are used. Therefore, the design of synthetic macromolecules with tertiary structure requires not only chains with well-defined molecular weight but also, in particular, macromolecules with no distribution of their chain length.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1525-7797
1526-4602
DOI:10.1021/bm015559l