Anisotropy and Nanomechanics of Cellulose Nanocrystals/Polyethylene Glycol Composite Films
The influence of shear flow on the nanomechanical properties of cellulose nanocrystal (CNC)/polyethylene glycol (PEG) composite films and the distribution of anisotropic phases are investigated at various CNC/PEG ratios. Here, the drying process of CNC/PEG mixed suspensions is systematically traced...
Saved in:
Published in | Biomacromolecules Vol. 23; no. 4; pp. 1592 - 1600 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
11.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The influence of shear flow on the nanomechanical properties of cellulose nanocrystal (CNC)/polyethylene glycol (PEG) composite films and the distribution of anisotropic phases are investigated at various CNC/PEG ratios. Here, the drying process of CNC/PEG mixed suspensions is systematically traced by rheology, followed by the spatial mapping of local mechanical properties of CNC/PEG films by nanoindentation. The detailed study of the morphology of CNC/PEG films by polarized optical microscopy (POM) and image analysis revealed the link between the mechanical properties and the influence of shear flow. A comparison of the data obtained for shear-dried films with nonsheared films showed the improved reduced Young’s modulus (E r) and hardness (H), and suppression of microphase separation in the shear-dried films. Based on this experimental evidence, a mechanism is proposed to explain the microstructural transition during the shear-drying process leading to the generation of the anisotropic domains containing the shear-induced assembled structure of CNC particles coexisting with the elongated PEG microphases. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1525-7797 1526-4602 |
DOI: | 10.1021/acs.biomac.1c01392 |