A Quantitative Structural Investigation of the 0.1 wt % Nb–SrTiO3(001)/H2O Interface

Surface X-ray diffraction has been employed to elucidate the structure of the interface between a well-characterized (001) surface of 0.1 wt % Nb–SrTiO3 and liquid H2O. Results are reported for the clean surface, the surface in contact with a drop of liquid water, and the surface after the water dro...

Full description

Saved in:
Bibliographic Details
Published inJournal of physical chemistry. C Vol. 118; no. 20; pp. 10980 - 10988
Main Authors Hussain, H., Torrelles, X., Rajput, P., Nicotra, M., Thornton, G., Zegenhagen, J.
Format Journal Article
LanguageEnglish
Published American Chemical Society 22.05.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Surface X-ray diffraction has been employed to elucidate the structure of the interface between a well-characterized (001) surface of 0.1 wt % Nb–SrTiO3 and liquid H2O. Results are reported for the clean surface, the surface in contact with a drop of liquid water, and the surface after the water droplet has been removed with a flow of nitrogen. The investigation revealed that the clean surface, prepared via annealing in 1 × 10–2 mbar O2 partial pressure, is unreconstructed and rough on a short length scale. The surface is covered with large terraces, the topmost layer of which is either TiO2 or SrO with an area ratio of about 7/3. For the surface in contact with water, our results reveal that associative H2O adsorption is favored for the TiO2-terminated terrace whereas adsorption is dissociative for the SrO-terminated terrace, which validates recent first-principles calculations. After removal of the water droplet, the surface largely resembles the water-covered surface but now with a disordered overlayer of water present on the surface.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1932-7447
1932-7455
DOI:10.1021/jp5034118