Explicit arithmetic of Jacobians of generalized Legendre curves over global function fields

The authors study the Jacobian $J$ of the smooth projective curve $C$ of genus $r-1$ with affine model $y^r = x^r-1(x + 1)(x + t)$ over the function field $\mathbb F_p(t)$, when $p$ is prime and $r\ge 2$ is an integer prime to $p$. When $q$ is a power of $p$ and $d$ is a positive integer, the author...

Full description

Saved in:
Bibliographic Details
Main Authors Berger, Lisa, Hall, Chris, Pannekoek, Ren e, Park, Jennifer Mun Young, Pries, Rachel, Sharif, Shahed, Silverberg, Alice, Ulmer, Douglas
Format eBook
LanguageEnglish
Published Providence, RI American Mathematical Society 2020
Edition1
SeriesMemoirs of the American Mathematical Society
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The authors study the Jacobian $J$ of the smooth projective curve $C$ of genus $r-1$ with affine model $y^r = x^r-1(x + 1)(x + t)$ over the function field $\mathbb F_p(t)$, when $p$ is prime and $r\ge 2$ is an integer prime to $p$. When $q$ is a power of $p$ and $d$ is a positive integer, the authors compute the $L$-function of $J$ over $\mathbb F_q(t^1/d)$ and show that the Birch and Swinnerton-Dyer conjecture holds for $J$ over $\mathbb F_q(t^1/d)$.
Bibliography:Access is restricted to licensed institutions
Provided by publisher.
Electronic reproduction.
Providence, Rhode Island
Forthcoming, volume 266, number 1295.
Description based on print version record.
American Mathematical Society.
Includes bibliographical references.
2020
We study the Jacobian J of the smooth projective curve C of genus r-1 with affine model yr = xr-1(x+ 1)(x + t) over the function field Fp(t), when p is prime and r [greater than or equal to] 2 is an integer prime to p. When q is a power of p and d is a positive integer, we compute the L-function of J over Fq(t1/d) and show that the Birch and Swinnerton-Dyer conjecture holds for J over Fq(t1/d). When d is divisible by r and of the form p[nu] + 1, and Kd := Fp([mu]d, t1/d), we write down explicit points in J(Kd), show that they generate a subgroup V of rank (r-1)(d-2) whose index in J(Kd) is finite and a power of p, and show that the order of the Tate-Shafarevich group of J over Kd is [J(Kd) : V ]2. When r > 2, we prove that the "new" part of J is isogenous over Fp(t) to the square of a simple abelian variety of dimension [phi](r)/2 with endomorphism algebra Z[[mu]r]+. For a prime with pr, we prove that J[](L) = {0} for any abelian extension L of Fp(t)"--
Mode of access : World Wide Web
ISBN:1470442191
9781470442194