7-Azetidinylquinolones as Antibacterial Agents. 2. Synthesis and Biological Activity of 7-(2,3-Disubstituted-1-azetidinyl)-4-oxoquinoline- and -1,8-naphthyridine-3-carboxylic Acids. Properties and Structure-Activity Relationships of Quinolones with an Azetidine Moiety

A series of 7-(2,3-disubstituted-1-azetidinyl)-1,4-dihydro-6-fluoro-4- oxoquinoline- and -1,8-naphthyridine-3-carboxylic acids, with varied substituents at the 1-, 5-, and 8-positions, was prepared to study the effects on potency and physicochemical properties of the substituent at position 2 of the...

Full description

Saved in:
Bibliographic Details
Published inJournal of medicinal chemistry Vol. 37; no. 24; pp. 4195 - 4210
Main Authors Frigola, Jordi, Torrens, Antoni, Castrillo, Jose A, Mas, Josep, Vano, David, Berrocal, Juana M, Calvet, Carme, Salgado, Leonardo, Redondo, Jordi
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 01.11.1994
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A series of 7-(2,3-disubstituted-1-azetidinyl)-1,4-dihydro-6-fluoro-4- oxoquinoline- and -1,8-naphthyridine-3-carboxylic acids, with varied substituents at the 1-, 5-, and 8-positions, was prepared to study the effects on potency and physicochemical properties of the substituent at position 2 of the azetidine moiety. The activity of the title compounds was determined in vitro against Gram-positive and Gram-negative bacteria, and the in vivo efficacy of selected derivatives was determined using a mouse infection model. The X-ray crystal structures of 6b, 6c, and 6d were found to be in reasonable agreement with the corresponding AM1 calculated geometries. Correlations between antibacterial potency of all the synthesized 7-azetidinylquinolones and naphthyridines and their calculated electronic properties and experimental capacity factors were established. Antibacterial efficacy and pharmacokinetic and physicochemical properties of selected derivatives were compared to the relevant 7-(3-amino-1-azetidinyl) and 7-(3-amino-3-methyl-1-azetidinyl) analogues (for Part 1, see: J. Med. Chem. 1993, 36, 801-810). A combination of a cyclopropyl or a substituted phenyl group at N-1 and a trans-3-amino-2-methyl-1-azetidinyl group at C-7 conferred the best overall antibacterial, pharmacokinetic, and physicochemical properties to the azetidinylquinolones studied.
Bibliography:ark:/67375/TPS-H2DJW5CR-S
istex:78876E2B9B46DA06CA215B4E48246BEEFE2D571D
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-2623
1520-4804
DOI:10.1021/jm00050a016