Alterations of Brain Quantitative Proteomics Profiling Revealed the Molecular Mechanisms of Diosgenin against Cerebral Ischemia Reperfusion Effects

Diosgenin (DIO), the starting material for the synthesis of steroidal anti-inflammatory drugs in the pharmaceutical industry, has been previously demonstrated to display pharmaceutical effects against cerebral ischemic reperfusion (I/R). However, the alterations of brain proteome profiles underlying...

Full description

Saved in:
Bibliographic Details
Published inJournal of proteome research Vol. 19; no. 3; pp. 1154 - 1168
Main Authors Zhang, Xinxin, Wang, Xingbin, Khurm, Muhammad, Zhan, Guanqun, Zhang, Hui, Ito, Yoichiro, Guo, Zengjun
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 06.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Diosgenin (DIO), the starting material for the synthesis of steroidal anti-inflammatory drugs in the pharmaceutical industry, has been previously demonstrated to display pharmaceutical effects against cerebral ischemic reperfusion (I/R). However, the alterations of brain proteome profiles underlying this treatment remain elusive. In the present study, the proteomics analysis of the brain tissues from I/R rats after DIO treatment was performed using an integrated TMT-based quantitative proteomic approach coupled with the liquid chromatography with tandem mass spectrometry technology. A total of 5043 proteins (ProteomeXchange identifier: PXD016303) were identified, of which 58 common differentially expressed proteins were significantly dysregulated in comparison between sham versus I/R and I/R versus DIO. The eight validated proteins including EPG5, STAT2, CPT1A, EIF2AK2, GGCT, HIKESHI, TNFAIP8, and EMC6 by quantitative polymerase chain reaction and western blotting consistently supported the TMT-based proteomic results, which were mainly associated with autophagy and inflammation response. Considering the anti-inflammatory characters of DIO, the biological functions of STAT2 and HIKESHI that are the probable direct anti-inflammatory targets were further investigated during the course of I/R treated with DIO. In addition, the combination of verified STAT2 and HIKESHI in peripheral blood samples from stroke patients resulted in the area under the curve value of 0.765 with P < 0.004 to distinguish stroke patients from healthy controls. Taken together, the current findings first mapped comprehensive proteomic changes after I/R was treated with DIO to better decipher the molecular mechanisms mainly based on the anti-inflammatory aspect underlying this therapeutic effect, providing a foundation for developing potentially therapeutic targets of anti-I/R of DIO and clinically prognostic biomarkers of stroke.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1535-3893
1535-3907
DOI:10.1021/acs.jproteome.9b00667