Is the Metallic Phosphorus Carbide (β0‑PC) Monolayer Stable? An Answer from a Theoretical Perspective

Phosphorus carbide (PC) has been the subject of major research efforts in recent years. In this regard, very recently, a stoichiometric metallic phosphorus carbide (β0-PC) monolayer has been proposed as locally stable with one lone nonbonding electron in each C atom. Therefore, the ambiguity of coex...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry letters Vol. 8; no. 4; pp. 747 - 754
Main Authors Rajbanshi, Biplab, Sarkar, Pranab
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 16.02.2017
Online AccessGet full text

Cover

Loading…
More Information
Summary:Phosphorus carbide (PC) has been the subject of major research efforts in recent years. In this regard, very recently, a stoichiometric metallic phosphorus carbide (β0-PC) monolayer has been proposed as locally stable with one lone nonbonding electron in each C atom. Therefore, the ambiguity of coexistence of a nonbonding electron with metallic properties for β0-PC is reported and hence deserves further explanation. Herein, using first-principles calculations, we have explored the stability and electronic properties of β0-PC to resolve this ambiguity. The metallic behavior of β0-PC is explained on the basis of electron delocalization involving P and C atoms along a zigzag chain of β0-PC. We have also explored the possibility of getting a β0-PC monolayer via homogeneous doping of C (P) into phosphorene (graphene) and layer exfoliation of 3D bulk PC with β-InS-like structure, which has been experimentally synthesized.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.6b02986