Donor–Acceptor–Donor-based π-Conjugated Oligomers for Nonlinear Optics and Near-IR Emission

A family of multi-heterocycle donor–acceptor–donor (DAD) telechelic conjugated oligomers designed for two-photon absorption (2PA) and emission in the near-infrared (near-IR) were prepared, and the relationship between their spectral, structural, and electrochemical properties were investigated. Thes...

Full description

Saved in:
Bibliographic Details
Published inChemistry of materials Vol. 23; no. 17; pp. 3805 - 3817
Main Authors Ellinger, Stefan, Graham, Kenneth R, Shi, Pengjie, Farley, Richard T, Steckler, Timothy T, Brookins, Robert N, Taranekar, Prasad, Mei, Jianguo, Padilha, Lazaro A, Ensley, Trenton R, Hu, Honghua, Webster, Scott, Hagan, David J, Van Stryland, Eric W, Schanze, Kirk S, Reynolds, John R
Format Journal Article
LanguageEnglish
Published American Chemical Society 13.09.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A family of multi-heterocycle donor–acceptor–donor (DAD) telechelic conjugated oligomers designed for two-photon absorption (2PA) and emission in the near-infrared (near-IR) were prepared, and the relationship between their spectral, structural, and electrochemical properties were investigated. These oligomers, based on electron-rich thiophene, phenylene, and 3,4-ethylenedioxythiophene (EDOT) units as donors along with electron-deficient benzothiadiazole or its derivative units as acceptors, have been characterized through linear absorbance and fluorescence measurements, nonlinear absorbance, cyclic voltammetry, and differential pulse voltammetry to demonstrate the evolution of narrow HOMO–LUMO gaps ranging from 1.05 to 1.95 eV, with the oligomers composed of EDOT and benzo[1,2-c,3,4-c′]bis[1,2,5]thiadiazole (BBT) exhibiting the narrowest gap. The absorption maxima ranges from 517 to 846 nm and the fluorescence maxima ranges from 651 to 1088 nm for the different oligomers. Z-scan and two-photon fluorescence were used to measure the frequency degenerate 2PA of the different oligomers. The oligomer’s 2PA cross sections ranged from 900–3500 GM, with the oligomer containing EDOT donor units and a BBT acceptor unit exhibiting the largest 2PA cross section. The use of these oligomers in red to near-IR emitting polymer light-emitting diodes (PLEDs) was demonstrated by blending the soluble emitting oligomers into a suitable host matrix. Energy transfer from the matrix to the emitting oligomer can be achieved, resulting in PLEDs with pure oligomer emission.
ISSN:0897-4756
1520-5002
DOI:10.1021/cm201424a