Development and Evaluation of Microencapsulated Oregano Essential Oil as an Alternative Treatment for Candida albicans Infections

Vulvovaginal candidiasis (VVC) is characterized as a very common fungal infection that significantly affects women’s health worldwide. Essential oils (EOs) are currently being evaluated as an alternative therapy. The development of efficient techniques such as micro- or nanoencapsulation for protect...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 16; no. 31; pp. 40628 - 40640
Main Authors Fernandes, Liliana, Barco-Tejada, Ainara, Blázquez, Elena, Araújo, Daniela, Ribeiro, Artur, Silva, Sónia, Cussó, Lorena, Costa-de-Oliveira, Sofia, Rodrigues, M. Elisa, Henriques, Mariana
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 07.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Vulvovaginal candidiasis (VVC) is characterized as a very common fungal infection that significantly affects women’s health worldwide. Essential oils (EOs) are currently being evaluated as an alternative therapy. The development of efficient techniques such as micro- or nanoencapsulation for protecting and controlling release is essential to overcome the limitations of EO applications. Therefore, the aim of this study was to develop and characterize oregano EO-loaded keratin microparticles (OEO-KMPs) as a potential treatment for VVC. OEO-KMPs were produced using high-intensity ultrasonic cycles and characterized in terms of morphological and physicochemical parameters. In vitro evaluation included assessing the toxicity of the OEO-KMPs and their effect against Candida albicans using microdilution and agar diffusion, while the activity against biofilm was quantified using colony forming units (CFU). The efficacy of the OEO-KMPs in an in vivo VVC mouse model was also studied. Female BALB/c mice were intravaginally infected with C. albicans, 24 h postinfection animals were treated intravaginally with 15 μL of OEO-KMPs and 24 h later vaginal fluid was analyzed for C. albicans and Lactobacillus growth (CFU mL–1). The results showed the stability of the OEO-KMPs over time, with high encapsulation efficiency and controlled release. This nanoparticle size facilitated penetration and completely inhibited the planktonic growth of C. albicans. In addition, an in vitro application of 2.5% of the OEO-KMPs eradicated mature C. albicans biofilms while preserving Lactobacillus species. In in vivo, a single intravaginal application of OEO-KMPs induced a reduction in C. albicans growth, while maintaining Lactobacillus species. In conclusion, this therapeutic approach with OEO-KMPs is promising as a potential alternative or complementary therapy for VVC while preserving vaginal microflora.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1944-8244
1944-8252
1944-8252
DOI:10.1021/acsami.4c07413