Evaluation of a Liquid Chromatography–Tandem Mass Spectrometry Method for the Analysis of Glucosylceramide and Galactosylceramide Isoforms in Cerebrospinal Fluid of Parkinson’s Disease Patients

Mutations in GBA1, encoding glucocerebrosidase beta 1 (GCase), are the most common genetic risk factor for Parkinson’s disease (PD). GCase dysfunction leads to an accumulation of glucosylceramide (GluCer) substrates in different organs and fluids. Despite the challenges in quantifying GluCer isoform...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 96; no. 31; pp. 12875 - 12882
Main Authors Castillo-Ribelles, Laura, Arranz-Amo, Jose Antonio, Hernández-Vara, Jorge, Samaniego-Toro, Daniela, Enriquez-Calzada, Silvia, Pozo, Sara Lucas-Del, Camprodon-Gomez, Maria, Laguna, Ariadna, Gonzalo, Mercedes Arrúe, Ferrer, Roser, Martinez-Vicente, Marta, Carnicer-Caceres, Clara
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 06.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Mutations in GBA1, encoding glucocerebrosidase beta 1 (GCase), are the most common genetic risk factor for Parkinson’s disease (PD). GCase dysfunction leads to an accumulation of glucosylceramide (GluCer) substrates in different organs and fluids. Despite the challenges in quantifying GluCer isoforms in biological samples, their potential clinical interest as PD biomarkers justifies the development of robust assays. An extensively evaluated high-performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) method for quantifying 14 GluCer and galactosylceramide (GalCer) isoforms in human cerebrospinal fluid (CSF) samples is presented. Sample pretreatment, HPLC, and MS/MS parameters were optimized. Evaluation was performed according to the recommendations of the Clinical and Laboratory Standards Institute and European Medicines Agency guidelines. Four 7-point calibration curves were generated, with a linearity interval from 2.5 to 200 nM (R 2 ≥ 0.995). The limit of quantification was set at 5 nM. Between-run precision and accuracy were up to 12.5 and 9%, respectively. After method validation, we measured the levels of GluCer and GalCer isoforms in CSF human samples, including 6 healthy controls (HC), 22 idiopathic GBA1 wild-type PD (iPD) patients, and 5 GBA1-associated PD (PD-GBA) patients. GluCer/GalCer median ratios were found to be higher in the CSF of PD-GBA patients, particularly in severe GBA1 mutations, than those in iPD and HC. The observed trends in GluCer/GalCer ratios among groups provide novel information for the comprehensive analysis of sphingolipids as potential biomarkers of PD.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
ISSN:0003-2700
1520-6882
1520-6882
DOI:10.1021/acs.analchem.4c02654