Impedimetric Gram-Positive Bacteria Biosensor Using Vancomycin-Coated Silica Nanoparticles with a Gold Nanocluster-Deposited Electrode

We introduce a swift, label-free electrochemical biosensor designed for the precise on-site detection of Gram-positive bacteria via electrochemical impedance spectroscopy. The biosensor was prepared by electroplating the electrode surface with gold nanoclusters (AuNCs) on the gold-interdigitated wav...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 96; no. 42; pp. 16658 - 16667
Main Authors Tieu, My-Van, Abafogi, Abdurhaman Teyib, Hoang, Thi Xoan, Pham, Duc-Trung, Park, Jaehwan, Park, Sungho, Park, Sungsu, Cho, Sungbo
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 22.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We introduce a swift, label-free electrochemical biosensor designed for the precise on-site detection of Gram-positive bacteria via electrochemical impedance spectroscopy. The biosensor was prepared by electroplating the electrode surface with gold nanoclusters (AuNCs) on the gold-interdigitated wave-shaped electrode with a printed circuit board (Au-PCB) electrode, which plays a role in cost-effective and promising lab-on-a-chip microsystems and integrated biosensing systems. This was followed by the application of silica nanoparticle-modified vancomycin (SiNPs-VAN) that binds to Gram-positive bacteria and facilitates their detection on the AuNC-coated surface. The biosensor demonstrated remarkable sensitivity and specificity. It could detect as few as 102 colony-forming units (CFU)/mL of Staphylococcus aureus, 101 CFU/mL of Bacillus cereus, and 102 CFU/mL of Micrococcus luteus within 20 min. Additionally, SiNPs-VAN is also known for its high stability, low cost, and ease of preparation. It is effective in identifying Gram-positive bacteria in water samples across a concentration range of 102–105 CFU/mL and shows selective identification of Gram-positive bacteria with minimal interference from Gram-negative bacteria like Escherichia coli. The ability of the biosensor to quantify Gram-positive bacteria aligns well with the results obtained from the quantitative real-time polymerase chain reaction (qRT-PCR). These findings highlight the potential of electrochemical biosensors for the detection of pathogens and other biological entities, marking a significant advancement in this field.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0003-2700
1520-6882
1520-6882
DOI:10.1021/acs.analchem.4c02852