C60-Adsorbed Single-Walled Carbon Nanotubes as Metal-Free, pH-Universal, and Multifunctional Catalysts for Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution
Buckminsterfullerene (C60) was adsorbed onto single-walled carbon nanotubes (SWCNTs) as an electron-acceptor to induce intermolecular charge-transfer with the SWCNTs, leading to a class of new metal-free C60-SWCNT electrocatalysts. For the first time, these newly developed C60-SWCNTs were demonstrat...
Saved in:
Published in | Journal of the American Chemical Society Vol. 141; no. 29; pp. 11658 - 11666 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
24.07.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Buckminsterfullerene (C60) was adsorbed onto single-walled carbon nanotubes (SWCNTs) as an electron-acceptor to induce intermolecular charge-transfer with the SWCNTs, leading to a class of new metal-free C60-SWCNT electrocatalysts. For the first time, these newly developed C60-SWCNTs were demonstrated to act as trifunctional metal-free catalysts for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) over a wide range of pH values, from acid to alkaline, with even higher electrocatalytic activities and better long-term stabilities than those of commercial Pt and RuO2 counterparts. Thus, the adsorption-induced intermolecular charge-transfer with the C60 electron-acceptor can provide a general approach to high-performance, metal-free, pH-universal carbon-based trifunctional metal-free electrocatalysts for water-splitting and beyond. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0002-7863 1520-5126 1520-5126 |
DOI: | 10.1021/jacs.9b05006 |