Geology of the epithermal Ag–Au Huevos Verdes vein system and San José district, Deseado massif, Patagonia, Argentina

The San José district is located in the northwest part of the Deseado massif and hosts a number of epithermal Ag–Au quartz veins of intermediate sulfidation style, including the Huevos Verdes vein system. Veins are hosted by andesitic rocks of the Bajo Pobre Formation and locally by rhyodacitic pyro...

Full description

Saved in:
Bibliographic Details
Published inMineralium deposita Vol. 47; no. 3; pp. 233 - 249
Main Authors Dietrich, Andreas, Gutierrez, Ronald, Nelson, Eric P., Layer, Paul W.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer-Verlag 01.03.2012
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The San José district is located in the northwest part of the Deseado massif and hosts a number of epithermal Ag–Au quartz veins of intermediate sulfidation style, including the Huevos Verdes vein system. Veins are hosted by andesitic rocks of the Bajo Pobre Formation and locally by rhyodacitic pyroclastic rocks of the Chon Aike Formation. New 40 Ar/ 39 Ar constraints on the age of host rocks and mineralization define Late Jurassic ages of 151.3 ± 0.7 Ma to 144.7 ± 0.1 Ma for volcanic rocks of the Bajo Pobre Formation and of 147.6 ± 1.1 Ma for the Chon Aike Formation. Illite ages of the Huevos Verdes vein system of 140.8 ± 0.2 and 140.5 ± 0.3 Ma are 4 m.y. younger than the volcanic host rock unit. These age dates are among the youngest reported for Jurassic volcanism in the Deseado massif and correlate well with the regional context of magmatic and hydrothermal activity. The Huevos Verdes vein system has a strike length of 2,000 m, with several ore shoots along strike. The vein consists of a pre-ore stage and three main ore stages. Early barren quartz and chalcedony are followed by a mottled quartz stage of coarse saccharoidal quartz with irregular streaks and discontinuous bands of sulfide-rich material. The banded quartz–sulfide stage consists of sulfide-rich bands alternating with bands of quartz and bands of chlorite ± illite. Late-stage sulfide-rich veinlets are associated with kaolinite gangue. Ore minerals are argentite and electrum, together with pyrite, sphalerite, galena, chalcopyrite, minor bornite, covellite, and ruby silver. Wall rock alteration is characterized by narrow (< 3 m) halos of illite and illite/smectite next to veins, grading outward into propylitic alteration. Gangue minerals are dominantly massive quartz intergrown with minor to accessory adularia. Epidote, illite, illite/smectite, and, preferentially at deeper levels, Fe-chlorite gangue indicate near-neutral pH hydrothermal fluids at temperatures of >220°C. Kaolinite occurring with the late sulfide-rich veinlet stage indicates pH < 4 and a temperature of <200°C. The Huevos Verdes system has an overall strike of 325°, dipping on average 65° NE. The orientations of individual ore shoots are controlled by vein strike and intersecting north-northwest-striking faults. We propose a structural model for the time of mineralization of the San José district, consisting of a conjugate shear pair of sinistral north-northwest- and dextral west-northwest-striking faults that correspond to R and R ′ in the Riedel shear model and that are related to master faults (M) of north-northeast-strike. Veins of 315° strike can be interpreted as nearly pure extensional fractures (T). Variations in vein strike predict an induced sinistral shear component for strike directions of >315°, whereas strike directions of <315° are predicted with an induced dextral strike–slip movement. The components of the structural model appear to be present on a regional scale and are not restricted to the San José district.
ISSN:0026-4598
1432-1866
DOI:10.1007/s00126-010-0327-2