Ultralow-Power Circuit and Sensing Applications Based on Subthermionic Threshold Switching Transistors

The most recent breakthrough in state-of-the-art electronics and optoelectronics involves the adoption of steep-slope field-effect transistors (FETs), promoting sub-60 mV/dec subthreshold swing (SS) at ambient temperature, effectively overcoming “Boltzmann limit” to minimize power consumption. Here,...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 18; no. 44; pp. 30497 - 30511
Main Authors Devnath, Anupom, Bae, Junseong, Alimkhanuly, Batyrbek, Lee, Gisung, Lee, Seunghyun, Kadyrov, Arman, Patil, Shubham, Lee, Dr Seunghyun
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 05.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The most recent breakthrough in state-of-the-art electronics and optoelectronics involves the adoption of steep-slope field-effect transistors (FETs), promoting sub-60 mV/dec subthreshold swing (SS) at ambient temperature, effectively overcoming “Boltzmann limit” to minimize power consumption. Here, a series integration of nanoscale copper-based resistive-filamentary threshold switch (TS) with the IGZO channel-based FET is used to develop a TS-FET, in which the turn-on characteristics exhibit an abrupt transition over five decades, with an extremely low SS of 7 mV/dec, a high on/off ratio (>109), and ultralow leakage current (40-fold decrease), ensuring excellent repeatability and device yield. Unlike previous device-centric studies, this work highlights potential circuit applications (logic-inverter, pulse-sensor amplification, and photodetector) based on TS-FET. The sharp transition behavior of TS-FET enables the establishment of logic inverters with a high voltage gain of ≈800, with a circuit-level demonstration achieving a bias-independent record-high intrinsic gain (>1000). A wearable pulse sensor integrated with an amplifier circuit ensured the precise amplification of electrophysical signals by 450 times. In addition, the application of a TS-FET-based photodetector features high responsivity (1.08 × 104 mA/W) and detectivity (1.03 × 1020 Jones). The low-power strategy of TS-FETs is promising for the development of energy-efficient integrated circuits alongside sensor-interconnected biomedical applications in wearable technology.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1936-0851
1936-086X
1936-086X
DOI:10.1021/acsnano.4c08650