Synthesis of Au38(SCH2CH2Ph)24, Au36(SPh‑tBu)24, and Au30(S‑tBu)18 Nanomolecules from a Common Precursor Mixture

Phenylethanethiol protected nanomolecules such as Au25, Au38, and Au144 are widely studied by a broad range of scientists in the community, owing primarily to the availability of simple synthetic protocols. However, synthetic methods are not available for other ligands, such as aromatic thiol and bu...

Full description

Saved in:
Bibliographic Details
Published inLangmuir Vol. 33; no. 41; pp. 10958 - 10964
Main Authors Rambukwella, Milan, Dass, Amala
Format Journal Article
LanguageEnglish
Published American Chemical Society 17.10.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Phenylethanethiol protected nanomolecules such as Au25, Au38, and Au144 are widely studied by a broad range of scientists in the community, owing primarily to the availability of simple synthetic protocols. However, synthetic methods are not available for other ligands, such as aromatic thiol and bulky ligands, impeding progress. Here we report the facile synthesis of three distinct nanomolecules, Au38(SCH2CH2Ph)24, Au36(SPh-tBu)24, and Au30(S-tBu)18, exclusively, starting from a common Au n (glutathione) m (where n and m are number of gold atoms and glutathiolate ligands) starting material upon reaction with HSCH2CH2Ph, HSPh-tBu, and HStBu, respectively. The systematic synthetic approach involves two steps: (i) synthesis of kinetically controlled Au n (glutathione) m crude nanocluster mixture with 1:4 gold to thiol molar ratio and (ii) thermochemical treatment of the purified nanocluster mixture with excess thiols to obtain thermodynamically stable nanomolecules. Thermochemical reactions with physicochemically different ligands formed highly monodispersed, exclusively three different core-size nanomolecules, suggesting a ligand induced core-size conversion and structural transformation. The purpose of this work is to make available a facile and simple synthetic method for the preparation of Au38(SCH2CH2Ph)24, Au36(SPh-tBu)24, and Au30(S-tBu)18, to nonspecialists and the broader scientific community. The central idea of simple synthetic method was demonstrated with other ligand systems such as cyclopentanethiol (HSC5H9), cyclohexanethiol­(HSC6H11), para-methylbenzenethiol­(pMBT), 1-pentanethiol­(HSC5H11), 1-hexanethiol­(HSC6H13), where Au36(SC5H9)24, Au36(SC6H11)24, Au36(pMBT)24, Au38(SC5H11)24, and Au38(SC6H13)24 were obtained, respectively.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0743-7463
1520-5827
1520-5827
DOI:10.1021/acs.langmuir.7b03080