Synergistic Effects of Keggin-Type Phosphotungstic Acid-Supported Single-Atom Catalysts in a Fast NH3‑SCR Reaction

Fast selective catalytic reduction of nitrogen oxide with ammonia (NH3-SCR) (2NH3 + NO2 + NO → 2N2 + 3H2O) has aroused great interest in recent years because it is inherently faster than the standard NH3-SCR reaction (4NO + 4NH3 + O2 → 4N2 + 6H2O). In the present paper, the mechanism of the fast NH3...

Full description

Saved in:
Bibliographic Details
Published inInorganic chemistry Vol. 61; no. 48; pp. 19156 - 19171
Main Authors Lin, Chun-Hong, Qin, Rui-Cheng, Cao, Ning, Wang, Dan, Liu, Chun-Guang
Format Journal Article
LanguageEnglish
Published American Chemical Society 05.12.2022
Online AccessGet full text

Cover

Loading…
More Information
Summary:Fast selective catalytic reduction of nitrogen oxide with ammonia (NH3-SCR) (2NH3 + NO2 + NO → 2N2 + 3H2O) has aroused great interest in recent years because it is inherently faster than the standard NH3-SCR reaction (4NO + 4NH3 + O2 → 4N2 + 6H2O). In the present paper, the mechanism of the fast NH3-SCR reaction catalyzed by a series of single-atom catalysts (SACs), M1/PTA SACs (PTA = Keggin-type phosphotungstic acid, M = Mn, Fe, Co, Ni, Ru, Rh, Pd, Ir, and Pt), has been systematically studied by means of density functional theory (DFT) calculations. Molecular geometry and electronic structural analysis show that Jahn–Teller distortion effects promote an electron transfer process from N–H bonding orbitals of the NH3 molecule to the symmetry-allowed d orbitals (dxy and dx2–y2 ) of the single metal atom, which effectively weakens the N–H bond of the adsorbed NH3 molecule. The calculated free energy profiles along the favorable catalytic path show that decomposition of NH3 to *NH2 and *H species and decomposition of *NHNOH into N2 and H2O have high free energy barriers in the whole fast NH3-SCR path. A good synergistic effect between the Brønsted acid site (surface oxygen atom in the PTA support) and the Lewis acid site (single metal atom) effectively enhances the decomposition of NH3 to *NH2 and *H species. M1/PTA SACs (M = Ru, Rh, Pd, and Pt) were found to have potential for fast NH3-SCR reaction because of the relatively small free energy barrier and strong thermodynamic driving forces. We hope our computational results could provide some new ideas for designing and fabricating fast NH3-SCR catalysts with high activity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0020-1669
1520-510X
DOI:10.1021/acs.inorgchem.2c02759