Mesoporous High-Entropy Alloy Films
High-entropy alloys (HEAs) are promising materials for electrochemical energy applications due to their excellent catalytic performance and durability. However, the controlled synthesis of HEAs with a well-defined structure and a uniform composition distribution remains a challenge. Herein, a soft t...
Saved in:
Published in | ACS nano Vol. 18; no. 40; pp. 27617 - 27629 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
08.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | High-entropy alloys (HEAs) are promising materials for electrochemical energy applications due to their excellent catalytic performance and durability. However, the controlled synthesis of HEAs with a well-defined structure and a uniform composition distribution remains a challenge. Herein, a soft template-assisted electrodeposition technique is used to fabricate a mesoporous HEA (m-HEA) film with a uniform composition distribution of Pt, Pd, Rh, Ru, and Cu, providing a suitable platform for investigating structure–performance relationships. Electrochemical deposition enables the uniform nucleation and grain growth of m-HEA, which can be deposited onto many conductive substrates. The m-HEA film exhibits an enhanced mass activity of 4.2 A mgPt –1 toward methanol oxidation reaction (MOR), which is 7.2-fold and 35-fold higher than a mesoporous Pt film and commercial Pt black, respectively. Experimental characterization indicates that structural defects and a low work function of the m-HEA film offer sufficient active sites and fast electron-transfer kinetics. Furthermore, theoretical calculations demonstrate that the variety of favorable adsorption sites on multimetallic elements of HEA reduces the barriers for dehydration pathways and *CO species removal, ensuring optimal performance for complex MOR reactions. This work provides an effective approach to designing a variety of HEA catalysts with well-controlled porous structures for targeted electrocatalytic applications. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1936-0851 1936-086X 1936-086X |
DOI: | 10.1021/acsnano.4c08929 |