Thermomechanically Resilient Polyionic Elastomers with Enhanced Anti-Icing Performances
Anti-icing gels inhibit ice formation and accretion; however, current iterations face prevalent drawbacks such as poor strength, weak substrate adhesion, and limited anti-icing properties. Herein, we propose a novel approach to address these challenges by developing a thermomechanical robust polyion...
Saved in:
Published in | ACS applied materials & interfaces Vol. 16; no. 25; pp. 32693 - 32701 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
26.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Anti-icing gels inhibit ice formation and accretion; however, current iterations face prevalent drawbacks such as poor strength, weak substrate adhesion, and limited anti-icing properties. Herein, we propose a novel approach to address these challenges by developing a thermomechanical robust polyionic elastomer (PIE) with enhanced anti-icing properties. The PIE surface exhibits an icing delay time up to 5400 s and remains frost-free after exposure to −10 °C for 3.5 h, attributed to the inhibitory effect on ice formation by ions from ILs and the polyelectrolyte network. Moreover, the PIE exhibits remarkable anti-icing durability, with ice adhesion strengths below 35 kPa after undergoing 30 icing/deicing cycle tests at −20 °C. Following sandpaper abrasion (300 cycles), scratching, and heat treatment (100 °C, 16 h), the adhesion strength remains ca. 20 kPa, highlighting its resilience under various thermal and mechanical conditions. This exceptional durability is attributed to the low volatility of the IL and the robust ionic interactions within the PIE network. Furthermore, the PIE demonstrates favorable self-healing properties and strong substrate adhesion in both low-temperature and ambient environments, facilitated by the abundance of hydrogen bonds and electrostatic forces within PIE. This work presents an innovative approach to developing high-performance, durable, and robust anti-icing materials with potential implications across various fields. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1944-8244 1944-8252 1944-8252 |
DOI: | 10.1021/acsami.4c04501 |