ConSTR: A Contextual Search Term Recommender
In this demo paper, we present ConSTR, a novel Contextual Search Term Recommender that utilises the user's interaction context for search term recommendation and literature retrieval. ConSTR integrates a two-layered recommendation interface: the first layer suggests terms with respect to a user...
Saved in:
Published in | 2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL) pp. 295 - 296 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this demo paper, we present ConSTR, a novel Contextual Search Term Recommender that utilises the user's interaction context for search term recommendation and literature retrieval. ConSTR integrates a two-layered recommendation interface: the first layer suggests terms with respect to a user's current search term, and the second layer suggests terms based on the users' previous search activities (interaction context). For the demonstration, ConSTR is built on the arXiv, an academic repository consisting of 1.8 million documents. |
---|---|
DOI: | 10.1109/JCDL52503.2021.00042 |