Channel Length Scaling of MoS2 MOSFETs

In this article, we investigate electrical transport properties in ultrathin body (UTB) MoS2 two-dimensional (2D) crystals with channel lengths ranging from 2 μm down to 50 nm. We compare the short channel behavior of sets of MOSFETs with various channel thickness, and reveal the superior immunity t...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 6; no. 10; pp. 8563 - 8569
Main Authors Liu, Han, Neal, Adam T, Ye, Peide D
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 23.10.2012
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this article, we investigate electrical transport properties in ultrathin body (UTB) MoS2 two-dimensional (2D) crystals with channel lengths ranging from 2 μm down to 50 nm. We compare the short channel behavior of sets of MOSFETs with various channel thickness, and reveal the superior immunity to short channel effects of MoS2 transistors. We observe no obvious short channel effects on the device with 100 nm channel length (L ch) fabricated on a 5 nm thick MoS2 2D crystal even when using 300 nm thick SiO2 as gate dielectric, and has a current on/off ratio up to ∼109. We also observe the on-current saturation at short channel devices with continuous scaling due to the carrier velocity saturation. Also, we reveal the performance limit of short channel MoS2 transistors is dominated by the large contact resistance from the Schottky barrier between Ni and MoS2 interface, where a fully transparent contact is needed to achieve a high-performance short channel device.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1936-0851
1936-086X
DOI:10.1021/nn303513c