Modulating the Configuration of Air Cathodes toward the Extended Triple-Phase Boundaries of Li‑O2 Batteries

Li-O2 batteries (LOBs), with their high theoretical energy density, are seen as the prime candidates for post-lithium-ion battery development to address the increasing energy demand. The performance of LOBs is primarily determined by the formation and decomposition behavior of their discharge produc...

Full description

Saved in:
Bibliographic Details
Published inACS energy letters Vol. 9; no. 6; pp. 2848 - 2857
Main Authors Cho, Seonyong, Jung, Hwisu, Park, Mihui, Lyu, Lulu, Kang, Yong-Mook
Format Journal Article
LanguageEnglish
Published American Chemical Society 14.06.2024
Online AccessGet full text

Cover

Loading…
More Information
Summary:Li-O2 batteries (LOBs), with their high theoretical energy density, are seen as the prime candidates for post-lithium-ion battery development to address the increasing energy demand. The performance of LOBs is primarily determined by the formation and decomposition behavior of their discharge product, lithium peroxide (Li2O2), formed at the triple-phase boundary (TPB) among Li+, e–, and O2. Traditional electrodes, however, have a limited TPB area, which restricts Li2O2 generation and lowers the energy density. In this study, a unique dual-sided electrode configuration, designed to extend the TPB, was suggested. By applying an active material slurry on both sides of the gas diffusion layer, this configuration enhances mass transfer and facilitates the nucleation/decomposition of Li2O2. Such improvements lead to increased capacity and better cyclic reversibility, effectively addressing the trade-off between capacity and efficiency. These findings highlight the crucial role of an extended TPB in boosting the reversibility and energy density of LOBs.
ISSN:2380-8195
2380-8195
DOI:10.1021/acsenergylett.4c01166