Measurements of Oxygen Electroadsorption Energies and Oxygen Evolution Reaction on RuO2(110): A Discussion of the Sabatier Principle and Its Role in Electrocatalysis

We report the hydroxide (OHad) and oxide (Oad) experimental electroadsorption free energies, their dependences on pH, and their correlations to the oxygen evolution reaction (OER) electrocatalysis on RuO2(110) surface. The Sabatier principle predicts that catalyst is most active when the intermediat...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 140; no. 50; pp. 17597 - 17605
Main Authors Kuo, Ding-Yuan, Paik, Hanjong, Kloppenburg, Jan, Faeth, Brendan, Shen, Kyle M, Schlom, Darrell G, Hautier, Geoffroy, Suntivich, Jin
Format Journal Article
LanguageEnglish
Published American Chemical Society 19.12.2018
Online AccessGet full text

Cover

Loading…
More Information
Summary:We report the hydroxide (OHad) and oxide (Oad) experimental electroadsorption free energies, their dependences on pH, and their correlations to the oxygen evolution reaction (OER) electrocatalysis on RuO2(110) surface. The Sabatier principle predicts that catalyst is most active when the intermediate stabilization is moderate, not too strong such that the bound intermediate disrupts the subsequent catalytic cycle, nor too weak such that the surface is ineffective. For decades, researchers have used this concept to rationalize the activity trend of many OER electrocatalysts including RuO2, which is among the state-of-the-art OER catalysts. In this article, we report an experimental assessment of the Sabatier principle by comparing the oxygen electroadsorption energy to the OER electrocatalysis for the first time on RuO2. We find that the OHad and Oad electroadsorption energies on RuO2(110) depend on pH and obey the scaling relation. However, we did not observe a direct correlation between the OHad and Oad electroadsorption energies and the OER activity in the comparative analysis that includes both RuO2(110) and IrO2(110). Our result raises a question of whether the Sabatier principle can describe highly active electrocatalysts, where the kinetic aspects may influence the electrocatalysis more strongly than the electroadsorption energy, which captures only the thermodynamics of the intermediates and not yet kinetics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.8b09657