Epitaxial Growth and Determination of Band Alignment of Bi2Te3–WSe2 Vertical van der Waals Heterojunctions

Artificial heterojunctions formed by vertical stacking of dissimilar two-dimensional (2D) transition metal dichalcogenide (TMD) monolayer materials in a chosen sequence hold tantalizing prospects for futuristic atomically thin circuits. The emergence of 2D topological insulators (TI), including Bi2T...

Full description

Saved in:
Bibliographic Details
Published inACS materials letters Vol. 2; no. 10; pp. 1351 - 1359
Main Authors Yang, Chih-Wen, Tang, Hao-Ling, Sattar, Shahid, Chiu, Ming-Hui, Wan, Yi, Chen, Chia-Hao, Kong, Jing, Huang, Kuo-Wei, Li, Lain-Jong, Tung, Vincent
Format Journal Article
LanguageEnglish
Published American Chemical Society 05.10.2020
Online AccessGet full text

Cover

Loading…
More Information
Summary:Artificial heterojunctions formed by vertical stacking of dissimilar two-dimensional (2D) transition metal dichalcogenide (TMD) monolayer materials in a chosen sequence hold tantalizing prospects for futuristic atomically thin circuits. The emergence of 2D topological insulators (TI), including Bi2Te3, Bi2Se3, and Sb2Te3, represents a new class of 2D building blocks and can complement the existing artificial heterojunctions as a result of their intriguing surface states protected by the time-reversal symmetry. However, the determination of band alignments of such 2D TI/TMD vertical heterojunctions, the key parameter for designing HJ-based electronic/photonic devices, which lies in the development of epitaxy growth, remains in its infancy. Here, we demonstrate the epitaxy growth of 2D TI/TMD vertical heterojunctions comprised of Bi2Te3/WSe2 with atomically clean interfaces that are spectroscopically accessible, and theoretically tractable. Cross-sectional scanning transmission electron microscopy (STEM) images and the presence of interlayer-coupled characteristics from Raman spectroscopy collectively confirm the neat stacking of Bi2Te3/WSe2 with the absence of unwanted containments. Microbeam X-ray photoelectron spectroscopy (μXPS) measurement coupled with the density functional theory (DFT) calculations and electrical characteristics of field effect transistors quantitatively reveals the type-II alignment of vertically stacked of quintuple layers (QL) Bi2Te3/WSe2. Meanwhile, the type-III band emerges when transitioning to multi-quintuple layer (MQL) Bi2Te3/WSe2. The finding here provides a well-defined example of the epitaxy growth paradigm, the interlayer coupling-electronic properties relationship, for these emerging 2D TI/TMDs vertical heterojunctions.
ISSN:2639-4979
2639-4979
DOI:10.1021/acsmaterialslett.0c00254