Solid-State Organization of Semifluorinated Alkanes Probed by 19F MAS NMR Spectroscopy

Bulk-phase self-assembly of a series of semifluorinated alkanes (SFAs) with hydrocarbon chains of varying length has been investigated by 19F NMR spectroscopy. At room temperature, a single 19F resonance for the terminal CF3 group was observed at −81.7 ppm for perfluorododecylhexane (F12H6), wherea...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. B Vol. 113; no. 5; pp. 1360 - 1366
Main Authors Lee, Young Joo, Clark, Christopher G, Graf, Robert, Wagner, Manfred, Müllen, Klaus, Spiess, Hans Wolfgang
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 05.02.2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Bulk-phase self-assembly of a series of semifluorinated alkanes (SFAs) with hydrocarbon chains of varying length has been investigated by 19F NMR spectroscopy. At room temperature, a single 19F resonance for the terminal CF3 group was observed at −81.7 ppm for perfluorododecylhexane (F12H6), whereas a CF3 resonance was seen at −82.5 ppm for perfluorododecyldodecane (F12H12) and perfluorododecyleicosane (F12H20). This difference in chemical shift position is ascribed to the different molecular packing geometries, i.e., a monolayer lamellar structure for F12H6 vs a bilayer lamellar organization for F12H12 and F12H20. Moreover, in F12H12, a solid−solid phase transition from bilayer to monolayer lamellae can be followed by 19F NMR spectroscopy. 1H/19F → 13C CPMAS experiments indicated that the phase transition is accompanied by disordering of hydrocarbon chains, but does not involve a significant conformational change in the fluorocarbon chains. Yet, a change in the 19F T 1 relaxation times was found to occur at the phase transition temperature, suggesting a change in the packing environments of the fluorocarbon chains. Two-dimensional exchange NMR experiments yielded cross-peaks between terminal CF3 and inner CF2CH2 moieties for the high-temperature monolayer phase, providing clear evidence for the spatial proximity between these groups. On the basis of these findings, we propose a model for the phase transition involving bilayer lamellae and monolayer lamellae with hydrocarbon and fluorocarbon interdigitation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1520-6106
1520-5207
DOI:10.1021/jp808406e