Boosting Visible-Light Photocatalytic Hydrogen Evolution with an Efficient CuInS2/ZnIn2S4 2D/2D Heterojunction
Developing photocatalysts with a high-efficiency charge separation remains a challenge in the solar hydrogen production. Herein, we devised and prepared a unique 2D/2D heterojunction of CuInS2/ZnIn2S4 nanosheets for solar hydrogen evolution. Structural characterizations reveal that the CuInS2/ZnIn2S...
Saved in:
Published in | ACS sustainable chemistry & engineering Vol. 7; no. 8; pp. 7736 - 7742 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
15.04.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2168-0485 2168-0485 |
DOI | 10.1021/acssuschemeng.8b06587 |
Cover
Loading…
Summary: | Developing photocatalysts with a high-efficiency charge separation remains a challenge in the solar hydrogen production. Herein, we devised and prepared a unique 2D/2D heterojunction of CuInS2/ZnIn2S4 nanosheets for solar hydrogen evolution. Structural characterizations reveal that the CuInS2/ZnIn2S4 2D/2D heterojunction with lattice match consists of the thin thickness of nanosheets and has a large interface contact area, boosting charges transfer and separation. Benefiting from the favorable 2D/2D heterojunction structure, the CuInS2/ZnIn2S4 2D/2D heterojunction photocatalyst with 5 wt % CuInS2 yields the highest H2 evolution rate of 3430.2 μmol·g–1·h–1. In addition, the apparent quantum efficiency of 5%CuInS2/ZnIn2S4 2D/2D heterojunction reaches 12.4% at 420 nm, which is high among the ZnIn2S4-based 2D/2D heterojunctions. The enhanced photocatalytic H2 evolution comes from the boosting charge separation. This work demonstrates that a 2D/2D heterojunction provides a potential way for significantly improving the solar hydrogen production performance of ZnIn2S4. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2168-0485 2168-0485 |
DOI: | 10.1021/acssuschemeng.8b06587 |