Synthesis of 8‑Substituted Analogues of Cyclic ADP-4-Thioribose and Their Unexpected Identification as Ca2+-Mobilizing Full Agonists
A series of 8-substituted analogues of cyclic ADP-4-thioribose (cADPtR, 3), which is a stable equivalent of Ca2+-mobilizing second messenger cyclic ADP-ribose (cADPR, 1), were designed as potential pharmacological tools for studies on cADPR-modulated Ca2+ signaling pathways. These 8-amino analogue (...
Saved in:
Published in | Journal of medicinal chemistry Vol. 60; no. 13; pp. 5868 - 5875 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
WASHINGTON
American Chemical Society
13.07.2017
Amer Chemical Soc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A series of 8-substituted analogues of cyclic ADP-4-thioribose (cADPtR, 3), which is a stable equivalent of Ca2+-mobilizing second messenger cyclic ADP-ribose (cADPR, 1), were designed as potential pharmacological tools for studies on cADPR-modulated Ca2+ signaling pathways. These 8-amino analogue (8-NH2-cADPtR, 4), 8-azido analogue (8-N3-cADPtR, 5), and 8-chloro analogue (8-Cl-cADPtR, 6) were efficiently synthesized, where the stereoselective N1-β-thioribosyladenine ring closure reaction via an α/β-equilibrium of the 1-aminothioribose derivative and construction of the characteristic 18-membered pyrophosphate ring by Ag+-promoted activation of a phenyl phosphorothioate type substrate were the two key steps. Although 8-NH2-cADPR (2) is a well-known potent antagonist against cADPR-inducing Ca2+-release, the 4-thioribose congener 8-NH2-cADPtR turned out unexpectedly to be a full agonist in sea urchin egg homogenate evaluation system. This important finding suggested that the ring-oxygen in the N1-ribose of cADPR analogues is essential for the antagonistic activity in the Ca2+-signaling pathway, which can contribute to clarify the structure–agonist/antagonist activity relationship. |
---|---|
Bibliography: | KAKEN ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0022-2623 1520-4804 |
DOI: | 10.1021/acs.jmedchem.7b00540 |