MiSo: A DSL for Robust and Efficient Solve and MInimize Problems
Many problems in computer graphics can be formulated as finding the global minimum of a function subject to a set of non-linear constraints (Minimize), or finding all solutions of a system of non-linear constraints (Solve). We introduce MiSo, a domain-specific language and compiler for generating ef...
Saved in:
Published in | ACM transactions on graphics Vol. 44; no. 4; pp. 1 - 18 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY, USA
ACM
01.08.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Many problems in computer graphics can be formulated as finding the global minimum of a function subject to a set of non-linear constraints (Minimize), or finding all solutions of a system of non-linear constraints (Solve). We introduce MiSo, a domain-specific language and compiler for generating efficient C++ code for low-dimensional Minimize and Solve problems, that uses interval methods to guarantee conservative results while using floating point arithmetic. We demonstrate that MiSo-generated code shows competitive performance compared to hand-optimized codes for several computer graphics problems, including high-order collision detection with non-linear trajectories, surface-surface intersection, and geometrical validity checks for finite element simulation. |
---|---|
AbstractList | Many problems in computer graphics can be formulated as finding the global minimum of a function subject to a set of non-linear constraints (Minimize), or finding all solutions of a system of non-linear constraints (Solve). We introduce MiSo, a domain-specific language and compiler for generating efficient C++ code for low-dimensional Minimize and Solve problems, that uses interval methods to guarantee conservative results while using floating point arithmetic. We demonstrate that MiSo-generated code shows competitive performance compared to hand-optimized codes for several computer graphics problems, including high-order collision detection with non-linear trajectories, surface-surface intersection, and geometrical validity checks for finite element simulation. |
ArticleNumber | 120 |
Author | Sichetti, Federico Puppo, Enrico Huang, Zizhou Panozzo, Daniele Zorin, Denis Attene, Marco |
Author_xml | – sequence: 1 givenname: Federico orcidid: 0000-0003-2805-306X surname: Sichetti fullname: Sichetti, Federico email: federico.sichetti@edu.unige.it organization: Università di Genova, Genova, Italy – sequence: 2 givenname: Enrico orcidid: 0000-0001-9780-5283 surname: Puppo fullname: Puppo, Enrico email: enrico.puppo@unige.it organization: Università di Genova, Genova, Italy – sequence: 3 givenname: Zizhou orcidid: 0009-0007-6529-4694 surname: Huang fullname: Huang, Zizhou email: zizhou@nyu.edu organization: New York University, New York, NY, USA – sequence: 4 givenname: Marco orcidid: 0000-0002-9012-7245 surname: Attene fullname: Attene, Marco email: jaiko@ge.imati.cnr.it organization: CNR IMATI, Genova, Italy – sequence: 5 givenname: Denis orcidid: 0000-0001-7733-5501 surname: Zorin fullname: Zorin, Denis email: dzorin@cs.nyu.edu organization: New York University, New York, NY, USA – sequence: 6 givenname: Daniele orcidid: 0000-0003-1183-2454 surname: Panozzo fullname: Panozzo, Daniele email: panozzo@nyu.edu organization: New York University, New York, NY, USA |
BookMark | eNo9j01LAzEYhINUsK3i3VNunlbzbj7ryVKrFrYorp6XJJtAZHcjSRX011tt9TQw8zDMTNBoiIND6BTIBQDjl1RSKIk8QGPgXBaSCjVCYyIpKQglcIQmOb8SQgRjYoyu16GOV3iOb-oK-5jwUzTveYP10OKl98EGN2xwHbsP9-utV0Pow5fDjymazvX5GB163WV3stcperldPi_ui-rhbrWYV4UGLmRhSz7TckYVM61vBW21ASW1U15zaiWTrTSCMicoh1JYwhW14L1xsN2vnKZTdL7rtSnmnJxv3lLodfpsgDQ_x5v98S15tiO17f-hv_AbRuVSJQ |
Cites_doi | 10.1142/S0218195908002647 10.1201/b22086 10.1145/166117.166158 10.1145/2866569 10.1145/3450626.3459767 10.1145/2766947 10.1016/j.tcs.2006.05.011 10.1145/3478513.3480551 10.1145/3687960 10.7717/peerj-cs.103 10.1145/3520484 10.1016/j.cad.2012.10.010 10.1016/j.jcp.2012.08.051 10.1145/3662181 10.1007/978-1-84800-155-8_7 10.1145/3460775 10.1109/TVCG.2006.56 10.1111/cgf.14395 10.1145/2185520.2185592 10.5555/2633467.2633565 10.1007/978-3-642-14743-2_13 10.1016/j.cad.2015.10.004 10.1016/j.cagd.2010.04.004 10.1016/S0377-0427(03)00422-9 10.1111/cgf.14479 10.1109/TSMCB.2005.850172 10.1109/2945.910820 10.1145/2661229.2661237 10.1007/s11590-016-1023-7 10.1111/cgf.14080 10.1145/2601097.2601114 10.1016/j.cad.2020.102856 10.1111/cgf.14074 10.1145/3355089.3356506 10.1016/j.cag.2019.03.014 10.1016/j.cagd.2021.101967 10.1111/1467-8659.00236 10.1145/3478513.3480506 10.1145/3519939.3523447 10.1145/3450626.3459802 10.1109/TVCG.2005.49 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1145/3731207 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-7368 |
EndPage | 18 |
ExternalDocumentID | 10_1145_3731207 3731207 |
GrantInformation_xml | – fundername: NSF (National Science Foundation) grantid: OAC-2411349; IIS-2313156 funderid: https://doi.org/10.13039/100000001 |
GroupedDBID | --Z -DZ -~X .DC 23M 2FS 4.4 5GY 5VS 6J9 85S 8US AAKMM AALFJ AAYFX ABPPZ ACGFO ACGOD ACM ADBCU ADL ADMLS AEBYY AEFXT AEJOY AENEX AENSD AETEA AFWIH AFWXC AIKLT AKRVB ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF BDXCO CCLIF CS3 F5P FEDTE GUFHI HGAVV I07 LHSKQ P1C P2P PQQKQ RNS ROL TWZ UHB UPT WH7 XSW ZCA ~02 9M8 AAFWJ AAYXX ABFSI AI. CITATION E.L EBS EJD HF~ MVM NHB OHT UKR VH1 XJT XOL ZY4 |
ID | FETCH-LOGICAL-a1567-c259a79384bdfd63dab187ae8fa53c747d7b634e635126c0583c1ffbe13688ea3 |
ISSN | 0730-0301 |
IngestDate | Thu Jul 31 00:10:29 EDT 2025 Mon Jul 28 16:30:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | This work is licensed under Creative Commons Attribution International 4.0. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a1567-c259a79384bdfd63dab187ae8fa53c747d7b634e635126c0583c1ffbe13688ea3 |
ORCID | 0000-0002-9012-7245 0000-0001-9780-5283 0000-0001-7733-5501 0000-0003-2805-306X 0009-0007-6529-4694 0000-0003-1183-2454 |
OpenAccessLink | https://dl.acm.org/doi/10.1145/3731207 |
PageCount | 18 |
ParticipantIDs | crossref_primary_10_1145_3731207 acm_primary_3731207 |
PublicationCentury | 2000 |
PublicationDate | 20250801 2025-08-00 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: 20250801 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York, NY, USA |
PublicationPlace_xml | – name: New York, NY, USA |
PublicationTitle | ACM transactions on graphics |
PublicationTitleAbbrev | ACM TOG |
PublicationYear | 2025 |
Publisher | ACM |
Publisher_xml | – name: ACM |
References | M. Bartoň, I. Hanniel, G. Elber, and M.-S. Kim. 2010. Precise Hausdorff distance computation between polygonal meshes. Computer Aided Geometric Design 27, 8 (2010), 580–591. https://www.sciencedirect.com/science/article/pii/S016783961000049X Advances in Applied Geometry. K. Hormann, C. Yap, and Y.S. Zhang. 2023. Range Functions of Any Convergence Order and Their Amortized Complexity Analysis. In Computer Algebra in Scientific Computing: 25th International Workshop, CASC 2023 (Havana, Cuba). Springer-Verlag, Berlin, Heidelberg, 162–182. Y. Kang, S.-H. Yoon, M.-H. Kyung, and M.-S. Kim. 2019. Fast and robust computation of the Hausdorff distance between triangle mesh and quad mesh for near-zero cases. Computers & Graphics 81 (2019), 61–72. T. Akenine-Möller, E. Haines, N. Hoffman, A. Pesce, M. Iwanicki, and S. Hillaire. 2018. Real-Time Rendering 4th Edition. A.K. Peters/CRC Press, Boca Raton, FL, USA. B. Lévy. 2016. Robustness and efficiency of geometric programs: The Predicate Construction Kit (PCK). Computer-Aided Design 72 (2016), 3–12. E.R. Hansen and R.I. Greenberg. 1983. An interval Newton method. Appl. Math. Comput. 12, 2–3 (May 1983), 89–98. J.P. Lim and S. Nagarakatte. 2022. One polynomial approximation to produce correctly rounded results of an elementary function for multiple representations and rounding modes. Proc. ACM Program. Lang. 6, POPL, Article 3 (Jan. 2022), 28 pages. T. Brochu, E. Edwards, and R. Bridson. 2012. Efficient geometrically exact continuous collision detection. ACM Trans. Graph. 31, 4, Article 96 (July 2012), 7 pages. M. Attene. 2020. Indirect predicates for Geometric Constructions. Computer-Aided Design 126 (2020), 102856. J.M.Snyder. 1991. Generative Modeling: An Approach to High Level Shape Design for Computer Graphics and CAD. Ph.D. Dissertation. G. Louis Bernstein and F. Kjolstad. 2016. Why New Programming Languages for Simulation? ACM Trans. Graph. 35, 2, Article 20e (May 2016), 3 pages. J. Smith and S. Schaefer. 2015. Bijective Parameterization with Free Boundaries. ACM Trans. Graph. 34, 4, Article 70 (2015), 9 pages. Z. Marschner, D. Palmer, P. Zhang, and J. Solomon. 2020b. Hexahedral Mesh Repair via Sum-of-Squares Relaxation. Computer Graphics Forum 39, 5 (Aug. 2020), 133–147. J.A. Carretero and M.A. Nahon. 2005. Solving minimum distance problems with convex or concave bodies using combinatorial global optimization algorithms. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 35, 6 (2005), 1144–1155. X. Chen, C. Yu, X. Ni, M. Chu, B. Wang, and B. Chen. 2024. A Time-Dependent Inclusion-Based Method for Continuous Collision Detection between Parametric Surfaces. ACM SIGGRAPH Computer Graphics 43, 6 (2024). M. Grant and S. Boyd. 2008. Graph implementations for nonsmooth convex programs. In Recent Advances in Learning and Control, V. Blondel, S. Boyd, and H. Kimura (Eds.). Springer-Verlag Limited, 95–110. M.B. Monagan, K.O. Geddes, K. M. Heal, G. Labahn, S.M. Vorkoetter, J. McCarron, and P. DeMarco. 2005. Maple 10 Programming Guide. Maplesoft, Waterloo ON, Canada. Y.-J. Kim, Y.-T. Oh, S.-H. Yoon, M.-S. Kim, and G. Elber. 2013. Efficient Hausdorff Distance computation for freeform geometric models in close proximity. Computer-Aided Design 45, 2 (2013), 270–276. Solid and Physical Modeling 2012. B. Wang,. Ferguson, X. Jiang, M. Attene, D. Panozzo, and T. Schneider. 2022. Fast and Exact Root Parity for Continuous Collision Detection. Computer Graphics Forum (Proceedings of Eurographics) 41, 2 (2022), 9 pages. X. Tang, T. Schneider, S. Kamil, A. Panda, J. Li, and D. Panozzo. 2020. EGGS: Sparsity-Specific Code Generation. Computer Graphics Forum 39, 5 (Aug. 2020), 209–219. K. Hormann, L. Kania, and C. Yap. 2021. Novel Range Functions via Taylor Expansions and Recursive Lagrange Interpolation with Application to Real Root Isolation. In Proceedings of the 2021 International Symposium on Symbolic and Algebraic Computation (Virtual Event, Russian Federation) (ISSAC '21). ACM, New York, NY, USA, 193–200. M. Aanjaneya, J.P. Lim, and S. Nagarakatte. 2024. The RLIBM Project. https://github.com/rutgers-apl/The-RLIBM-Project S. Lengagne, R. Kalawoun, F. Bouchon, and Y. Mezouar. 2020. Reducing pessimism in Interval Analysis using B-splines Properties: Application to Robotics. Reliable Computing 27 (2020), 63–87. Z. Zhang, Y.-J. Chiang, and C. Yap. 2024. Theory and Explicit Design of a Path Planner for an SE(3) Robot. arXiv:2407.05135 [cs.RO] https://arxiv.org/abs/2407.05135 Z. Marschner, D. Palmer, P. Zhang, and J. Solomon. 2020a. Hexahedral Mesh Repair via Sum-of-Squares Relaxation. Computer Graphics Forum 39, 5 (Aug. 2020), 133–147. Z. Ferguson, M. Li, T. Schneider, F. Gil-Ureta, T. Langlois, C. Jiang, D. Zorin, D.M. Kaufman, and D. Panozzo. 2021. Intersection-free Rigid Body Dynamics. ACM Transactions on Graphics (SIGGRAPH) 40, 4, Article 183 (2021). V. Stahl. 1995. Interval Methods for Bounding the Range of Polynomials and Solving Systems of Nonlinear Equations. Ph.D. Dissertation. J. R. Shewchuk. 1997. Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates. Discrete & Computational Geometry 18, 3 (Oct. 1997), 305–363. B. Wang, Z. Ferguson, T. Schneider, X. Jiang, M. Attene, and D. Panozzo. 2021. A Large-scale Benchmark and an Inclusion-based Algorithm for Continuous Collision Detection. ACM Trans. Graph. 40, 5, Article 188 (2021), 16 pages. J. Nocedal and S.J. Wright. 2006. Numerical Optimization. Springer, New York. J.A. Baerentzen and H. Aanaes. 2005. Signed distance computation using the angle weighted pseudonormal. IEEE Transactions on Visualization and Computer Graphics 11, 3 (2005), 243–253. S.-H. Son, M.-S. Kim, and G. Elber. 2021. Precise Hausdorff distance computation for freeform surfaces based on computations with osculating toroidal patches. Computer Aided Geometric Design 86 (2021), 101967. A. Meurer, C.P. Smith, M. Paprocki, O. Čertík, S. B. Kirpichev, M. Rocklin, A. Kumar, S. Ivanov, J.K. Moore, S. Singh, T. Rathnayake, S. Vig, B.E. Granger, R.P. Muller, F. Bonazzi, H. Gupta, S. Vats, F. Johansson, F. Pedregosa, M.J. Curry, A.R. Terrel, Š. Roučka, A. Saboo, I. Fernando, S. Kulal, R. Cimrman, and A. Scopatz. 2017. SymPy: symbolic computing in Python. PeerJ Computer Science 3 (2017), e103. Etienne De Klerk, Monique Laurent, and Zhao Sun. 2014. An error analysis for polynomial optimization over the simplex based on the multivariate hypergeometric distribution. http://arxiv.org/abs/1407.2108 arXiv:1407.2108 [math]. M. Aanjaneya, J.P. Lim, and S. Nagarakatte. 2022. Progressive polynomial approximations for fast correctly rounded math libraries. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation (San Diego, CA, USA) (PLDI 2022). ACM, New York, NY, USA, 552–565. G.E. Collins and A.G. Akritas. 1976. Polynomial real root isolation using Descarte's rule of signs. In Proceedings of the third ACM symposium on Symbolic and algebraic computation - SYMSAC '76 (SYMSAC '76). ACM Press, 272–275. A. Guezlec. 2001. "Meshsweeper": dynamic point-to-polygonal mesh distance and applications. IEEE Transactions on Visualization and Computer Graphics 7, 1 (2001), 47–61. A. Johnen, J.-F. Remacle, and C. Geuzaine. 2013. Geometrical validity of curvilinear finite elements. J. Comput. Phys. 233 (2013), 359–372. F. Kjolstad, S. Kamil, J. Ragan-Kelley, D.I.W. Levin, S. Sueda, D. Chen, E. Vouga, D.M. Kaufman, G. Kanwar, W. Matusik, and S. Amarasinghe. 2016. Simit: A Language for Physical Simulation. ACM Trans. Graph. 35, 2, Article 20 (May 2016), 21 pages. A. Meyer and S. Pion. 2008. FPG: A code generator for fast and certified geometric predicates. In Real numbers and computers. 47–60. M.W. Jones, J.A. Baerentzen, and M. Sramek. 2006. 3D distance fields: a survey of techniques and applications. IEEE Transactions on Visualization and Computer Graphics 12, 4 (2006), 581–599. J Snyder. 1992. Interval Analysis For Computer Graphics. ACM SIGGRAPH (1992), 121–130. Y. Hu, T.-M. Li, L. Anderson, J. Ragan-Kelley, and F. Durand. 2019. Taichi: a language for high-performance computation on spatially sparse data structures. ACM Transactions on Graphics 38, 6 (Nov. 2019), 1–16. J. Snyder, A.R. Woodbury, K. Fleischer, B. Currin, and A.H. Barr. 1993. Interval Methods for Multi-Point Collisions between Time-Dependent Curved Surfaces. In ACM SIGGRAPH. ACM. M. Tang, R. Tong, Z. Wang, and D. Manocha. 2014. Fast and exact continuous collision detection with Bernstein sign classification. ACM Transactions on Graphics 33, 6 (2014), 1–8. 10.1145/2661229.2661237 Y. Li, S. Kamil, K. Crane, A. Jacobson, and Y. Gingold. 2024. I♡Mesh: A DSL for Mesh Processing. ACM Trans. Graph. 43, 6 (2024). Y. Li, S. Kamil, A. Jacobson, and Y. Gingold. 2021a. I♡LA: Compilable Markdown for Linear Algebra. ACM Transactions on Graphics (TOG) 40, 6 (2021). Z. Marschner, P. Zhang, D. Palmer, and J. Solomon. 2021. Sum-of-squares geometry processing. ACM Trans. Graph. 40, 6, Article 253 (Dec. 2021), 13 pages. L. Jaulin, I. Braems, and E. Walter. 2002. Interval methods for nonlinear identification and robust control. In Proceedings of the 41st IEEE Conference on Decision and Control, 2002., Vol. 4. IEEE, Las Vegas, NV, USA, 4676–4681. E. De Klerk, M. Laurent, Z. Sun, and J.C. Vera. 2017. On the convergence rate of grid search for polynomial optimization over the simplex. Optimization Letters 11, 3 (March 2017), 597–608. CVX Research, Inc. 2012. CVX: Matlab Software for Disciplined Convex Programming, version 2.0. https://cvxr.com/cvx. J.P. Merlet. 2007. Interval Analysis and Robotics. Robotics Research 66, 147–156. 10.1007/978-3-642-14743-2_13 A. Johnen, J. F. Remacle, and C. Geuzaine. 2014. Geometrical Validity of High-Order Triangular Finite Elements. Eng. with Comput. 30, 3 (2014), 375–382. P. Zhang, Z. Marschner, J. Solomon, and R. Tamstorf. 2023. Sum-of-Squares Collision Detection for Curved Shapes and Paths. In ACM SIGGRAPH 2023 Conference Proceedings (Los Angeles, CA, USA). ACM, New York, e_1_2_1_60_1 Kjolstad F. (e_1_2_1_36_1) 2017 Snyder J (e_1_2_1_55_1) 1992 e_1_2_1_20_1 e_1_2_1_41_1 e_1_2_1_66_1 e_1_2_1_45_1 e_1_2_1_62_1 e_1_2_1_22_1 e_1_2_1_64_1 e_1_2_1_26_1 e_1_2_1_47_1 Zhang P. (e_1_2_1_65_1) Hadap S. (e_1_2_1_24_1) Hormann K. (e_1_2_1_27_1) Jaulin L. (e_1_2_1_30_1) 2002; 4 e_1_2_1_31_1 e_1_2_1_54_1 e_1_2_1_8_1 e_1_2_1_56_1 e_1_2_1_6_1 e_1_2_1_12_1 e_1_2_1_35_1 e_1_2_1_50_1 e_1_2_1_4_1 e_1_2_1_33_1 e_1_2_1_2_1 e_1_2_1_39_1 Lim J.P. (e_1_2_1_43_1) 2022 e_1_2_1_14_1 e_1_2_1_37_1 e_1_2_1_58_1 e_1_2_1_18_1 Hormann K. (e_1_2_1_28_1) Research CVX (e_1_2_1_16_1) 2012 Louis Bernstein G. (e_1_2_1_10_1) 2016; 35 e_1_2_1_42_1 e_1_2_1_40_1 e_1_2_1_67_1 e_1_2_1_23_1 e_1_2_1_46_1 e_1_2_1_61_1 e_1_2_1_21_1 e_1_2_1_44_1 e_1_2_1_63_1 Meyer A. (e_1_2_1_49_1) 2008 e_1_2_1_48_1 e_1_2_1_29_1 Collins G.E. (e_1_2_1_15_1) e_1_2_1_7_1 Shewchuk J. R. (e_1_2_1_52_1) 1997; 18 e_1_2_1_5_1 Hansen E.R. (e_1_2_1_25_1) 1983; 12 e_1_2_1_57_1 e_1_2_1_3_1 e_1_2_1_13_1 e_1_2_1_34_1 e_1_2_1_51_1 e_1_2_1_1_1 e_1_2_1_11_1 e_1_2_1_32_1 Lengagne S. (e_1_2_1_38_1) 2020; 27 e_1_2_1_53_1 e_1_2_1_17_1 e_1_2_1_59_1 e_1_2_1_9_1 e_1_2_1_19_1 |
References_xml | – reference: A. Johnen, J.-F. Remacle, and C. Geuzaine. 2013. Geometrical validity of curvilinear finite elements. J. Comput. Phys. 233 (2013), 359–372. – reference: Z. Zhang, Y.-J. Chiang, and C. Yap. 2024. Theory and Explicit Design of a Path Planner for an SE(3) Robot. arXiv:2407.05135 [cs.RO] https://arxiv.org/abs/2407.05135 – reference: S. Hadap, D. Eberle, P. Volino, M.C. Lin, S. Redon, and C. Ericson. 2004. Collision detection and proximity queries. In ACM SIGGRAPH 2004 Course Notes (Los Angeles, CA) (SIGGRAPH '04). ACM, New York, NY, USA, 15–es. – reference: J. Garloff, C. Jansson, and A.P. Smith. 2003. Lower bound functions for polynomials. J. Comput. Appl. Math. 157, 1 (2003), 207–225. – reference: Y. Li, S. Kamil, A. Jacobson, and Y. Gingold. 2021a. I♡LA: Compilable Markdown for Linear Algebra. ACM Transactions on Graphics (TOG) 40, 6 (2021). – reference: Z. Marschner, D. Palmer, P. Zhang, and J. Solomon. 2020a. Hexahedral Mesh Repair via Sum-of-Squares Relaxation. Computer Graphics Forum 39, 5 (Aug. 2020), 133–147. – reference: B. Lévy. 2016. Robustness and efficiency of geometric programs: The Predicate Construction Kit (PCK). Computer-Aided Design 72 (2016), 3–12. – reference: S.-H. Son, M.-S. Kim, and G. Elber. 2021. Precise Hausdorff distance computation for freeform surfaces based on computations with osculating toroidal patches. Computer Aided Geometric Design 86 (2021), 101967. – reference: H. Alt and L. Scharf. 2008. Computing the Hhausdorff Distance between Curved Objects. International Journal of Computational Geometry & Applications 18, 04 (2008), 307–320. – reference: X. Chen, C. Yu, X. Ni, M. Chu, B. Wang, and B. Chen. 2024. A Time-Dependent Inclusion-Based Method for Continuous Collision Detection between Parametric Surfaces. ACM SIGGRAPH Computer Graphics 43, 6 (2024). – reference: T. Akenine-Möller, E. Haines, N. Hoffman, A. Pesce, M. Iwanicki, and S. Hillaire. 2024. Real-Time Rendering - Ray Tracing Resources Page. https://www.realtimerendering.com/intersections.html – reference: S. Lengagne, R. Kalawoun, F. Bouchon, and Y. Mezouar. 2020. Reducing pessimism in Interval Analysis using B-splines Properties: Application to Robotics. Reliable Computing 27 (2020), 63–87. – reference: Z. Ferguson, M. Li, T. Schneider, F. Gil-Ureta, T. Langlois, C. Jiang, D. Zorin, D.M. Kaufman, and D. Panozzo. 2021. Intersection-free Rigid Body Dynamics. ACM Transactions on Graphics (SIGGRAPH) 40, 4, Article 183 (2021). – reference: M. Li, D.M. Kaufman, and C. Jiang. 2021b. Codimensional incremental potential contact. ACM Trans. Graph. 40, 4, Article 170 (July 2021), 24 pages. – reference: M. Aanjaneya, J.P. Lim, and S. Nagarakatte. 2024. The RLIBM Project. https://github.com/rutgers-apl/The-RLIBM-Project – reference: J.P. Merlet. 2007. Interval Analysis and Robotics. Robotics Research 66, 147–156. 10.1007/978-3-642-14743-2_13 – reference: J.M.Snyder. 1991. Generative Modeling: An Approach to High Level Shape Design for Computer Graphics and CAD. Ph.D. Dissertation. – reference: T. Akenine-Möller, E. Haines, N. Hoffman, A. Pesce, M. Iwanicki, and S. Hillaire. 2018. Real-Time Rendering 4th Edition. A.K. Peters/CRC Press, Boca Raton, FL, USA. – reference: K. Hormann, C. Yap, and Y.S. Zhang. 2023. Range Functions of Any Convergence Order and Their Amortized Complexity Analysis. In Computer Algebra in Scientific Computing: 25th International Workshop, CASC 2023 (Havana, Cuba). Springer-Verlag, Berlin, Heidelberg, 162–182. – reference: CVX Research, Inc. 2012. CVX: Matlab Software for Disciplined Convex Programming, version 2.0. https://cvxr.com/cvx. – reference: A. Johnen, J. F. Remacle, and C. Geuzaine. 2014. Geometrical Validity of High-Order Triangular Finite Elements. Eng. with Comput. 30, 3 (2014), 375–382. – reference: E. De Klerk, M. Laurent, Z. Sun, and J.C. Vera. 2017. On the convergence rate of grid search for polynomial optimization over the simplex. Optimization Letters 11, 3 (March 2017), 597–608. – reference: B. Wang,. Ferguson, X. Jiang, M. Attene, D. Panozzo, and T. Schneider. 2022. Fast and Exact Root Parity for Continuous Collision Detection. Computer Graphics Forum (Proceedings of Eurographics) 41, 2 (2022), 9 pages. – reference: J. R. Shewchuk. 1997. Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates. Discrete & Computational Geometry 18, 3 (Oct. 1997), 305–363. – reference: J. Smith and S. Schaefer. 2015. Bijective Parameterization with Free Boundaries. ACM Trans. Graph. 34, 4, Article 70 (2015), 9 pages. – reference: J. Nocedal and S.J. Wright. 2006. Numerical Optimization. Springer, New York. – reference: A. Meurer, C.P. Smith, M. Paprocki, O. Čertík, S. B. Kirpichev, M. Rocklin, A. Kumar, S. Ivanov, J.K. Moore, S. Singh, T. Rathnayake, S. Vig, B.E. Granger, R.P. Muller, F. Bonazzi, H. Gupta, S. Vats, F. Johansson, F. Pedregosa, M.J. Curry, A.R. Terrel, Š. Roučka, A. Saboo, I. Fernando, S. Kulal, R. Cimrman, and A. Scopatz. 2017. SymPy: symbolic computing in Python. PeerJ Computer Science 3 (2017), e103. – reference: A. Guezlec. 2001. "Meshsweeper": dynamic point-to-polygonal mesh distance and applications. IEEE Transactions on Visualization and Computer Graphics 7, 1 (2001), 47–61. – reference: Z. Marschner, D. Palmer, P. Zhang, and J. Solomon. 2020b. Hexahedral Mesh Repair via Sum-of-Squares Relaxation. Computer Graphics Forum 39, 5 (Aug. 2020), 133–147. – reference: Y.-J. Kim, Y.-T. Oh, S.-H. Yoon, M.-S. Kim, and G. Elber. 2013. Efficient Hausdorff Distance computation for freeform geometric models in close proximity. Computer-Aided Design 45, 2 (2013), 270–276. Solid and Physical Modeling 2012. – reference: G.E. Collins and A.G. Akritas. 1976. Polynomial real root isolation using Descarte's rule of signs. In Proceedings of the third ACM symposium on Symbolic and algebraic computation - SYMSAC '76 (SYMSAC '76). ACM Press, 272–275. – reference: M.B. Monagan, K.O. Geddes, K. M. Heal, G. Labahn, S.M. Vorkoetter, J. McCarron, and P. DeMarco. 2005. Maple 10 Programming Guide. Maplesoft, Waterloo ON, Canada. – reference: F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amarasinghe. 2017. The tensor algebra compiler. Proceedings of the ACM on Programming Languages 1, OOPSLA (2017), 1–29. – reference: P. Cignoni, C. Rocchini, and R. Scopigno. 1998. Metro: Measuring Error on Simplified Surfaces. Computer Graphics Forum 17, 2 (1998), 167–174. – reference: Etienne De Klerk, Monique Laurent, and Zhao Sun. 2014. An error analysis for polynomial optimization over the simplex based on the multivariate hypergeometric distribution. http://arxiv.org/abs/1407.2108 arXiv:1407.2108 [math]. – reference: Wolfram Research, Inc. 2023. Mathematica, Version 13.3. https://www.wolfram.com/mathematica Champaign, IL. – reference: G. Louis Bernstein and F. Kjolstad. 2016. Why New Programming Languages for Simulation? ACM Trans. Graph. 35, 2, Article 20e (May 2016), 3 pages. – reference: M. Grant and S. Boyd. 2008. Graph implementations for nonsmooth convex programs. In Recent Advances in Learning and Control, V. Blondel, S. Boyd, and H. Kimura (Eds.). Springer-Verlag Limited, 95–110. – reference: M. Tang, R. Tong, Z. Wang, and D. Manocha. 2014. Fast and exact continuous collision detection with Bernstein sign classification. ACM Transactions on Graphics 33, 6 (2014), 1–8. 10.1145/2661229.2661237 – reference: Huamin Wang. 2014. Defending continuous collision detection against errors. ACM Transactions on Graphics 33, 4 (July 2014), 1–10. – reference: M. Bartoň, I. Hanniel, G. Elber, and M.-S. Kim. 2010. Precise Hausdorff distance computation between polygonal meshes. Computer Aided Geometric Design 27, 8 (2010), 580–591. https://www.sciencedirect.com/science/article/pii/S016783961000049X Advances in Applied Geometry. – reference: P. Zhang, Z. Marschner, J. Solomon, and R. Tamstorf. 2023. Sum-of-Squares Collision Detection for Curved Shapes and Paths. In ACM SIGGRAPH 2023 Conference Proceedings (Los Angeles, CA, USA). ACM, New York, NY, USA, Article 76, 11 pages. – reference: T. Brochu, E. Edwards, and R. Bridson. 2012. Efficient geometrically exact continuous collision detection. ACM Trans. Graph. 31, 4, Article 96 (July 2012), 7 pages. – reference: J.A. Carretero and M.A. Nahon. 2005. Solving minimum distance problems with convex or concave bodies using combinatorial global optimization algorithms. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 35, 6 (2005), 1144–1155. – reference: B. Wang, Z. Ferguson, T. Schneider, X. Jiang, M. Attene, and D. Panozzo. 2021. A Large-scale Benchmark and an Inclusion-based Algorithm for Continuous Collision Detection. ACM Trans. Graph. 40, 5, Article 188 (2021), 16 pages. – reference: J Snyder. 1992. Interval Analysis For Computer Graphics. ACM SIGGRAPH (1992), 121–130. – reference: M.W. Jones, J.A. Baerentzen, and M. Sramek. 2006. 3D distance fields: a survey of techniques and applications. IEEE Transactions on Visualization and Computer Graphics 12, 4 (2006), 581–599. – reference: F. Kjolstad, S. Kamil, J. Ragan-Kelley, D.I.W. Levin, S. Sueda, D. Chen, E. Vouga, D.M. Kaufman, G. Kanwar, W. Matusik, and S. Amarasinghe. 2016. Simit: A Language for Physical Simulation. ACM Trans. Graph. 35, 2, Article 20 (May 2016), 21 pages. – reference: E.R. Hansen and R.I. Greenberg. 1983. An interval Newton method. Appl. Math. Comput. 12, 2–3 (May 1983), 89–98. – reference: M. Attene. 2020. Indirect predicates for Geometric Constructions. Computer-Aided Design 126 (2020), 102856. – reference: X. Tang, T. Schneider, S. Kamil, A. Panda, J. Li, and D. Panozzo. 2020. EGGS: Sparsity-Specific Code Generation. Computer Graphics Forum 39, 5 (Aug. 2020), 209–219. – reference: J.P. Lim and S. Nagarakatte. 2022. One polynomial approximation to produce correctly rounded results of an elementary function for multiple representations and rounding modes. Proc. ACM Program. Lang. 6, POPL, Article 3 (Jan. 2022), 28 pages. – reference: M. Aanjaneya, J.P. Lim, and S. Nagarakatte. 2022. Progressive polynomial approximations for fast correctly rounded math libraries. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation (San Diego, CA, USA) (PLDI 2022). ACM, New York, NY, USA, 552–565. – reference: Y. Kang, S.-H. Yoon, M.-H. Kyung, and M.-S. Kim. 2019. Fast and robust computation of the Hausdorff distance between triangle mesh and quad mesh for near-zero cases. Computers & Graphics 81 (2019), 61–72. – reference: K. Hormann, L. Kania, and C. Yap. 2021. Novel Range Functions via Taylor Expansions and Recursive Lagrange Interpolation with Application to Real Root Isolation. In Proceedings of the 2021 International Symposium on Symbolic and Algebraic Computation (Virtual Event, Russian Federation) (ISSAC '21). ACM, New York, NY, USA, 193–200. – reference: P. Herholz, X. Tang, T. Schneider, S. Kamil, D. Panozzo, and O. Sorkine-Hornung. 2022. Sparsity-Specific Code Optimization using Expression Trees. ACM Transactions on Graphics 41, 5 (2022), 175:1–19. – reference: Y. Zheng, H. Sun, X. Liu, H. Bao, and J. Huang. 2022. Economic Upper Bound Estimation in Hausdorff Distance Computation for Triangle Meshes. Computer Graphics Forum 41, 1 (2022), 46–56. – reference: L. Jaulin, I. Braems, and E. Walter. 2002. Interval methods for nonlinear identification and robust control. In Proceedings of the 41st IEEE Conference on Decision and Control, 2002., Vol. 4. IEEE, Las Vegas, NV, USA, 4676–4681. – reference: A. Meyer and S. Pion. 2008. FPG: A code generator for fast and certified geometric predicates. In Real numbers and computers. 47–60. – reference: Y. Li, S. Kamil, K. Crane, A. Jacobson, and Y. Gingold. 2024. I♡Mesh: A DSL for Mesh Processing. ACM Trans. Graph. 43, 6 (2024). – reference: Etienne De Klerk, Monique Laurent, and Pablo A. Parrilo. 2006. A PTAS for the minimization of polynomials of fixed degree over the simplex. Theoretical Computer Science 361, 2–3 (Sept. 2006), 210–225. 10.1016/j.tcs.2006.05.011 – reference: J. Snyder, A.R. Woodbury, K. Fleischer, B. Currin, and A.H. Barr. 1993. Interval Methods for Multi-Point Collisions between Time-Dependent Curved Surfaces. In ACM SIGGRAPH. ACM. – reference: V. Stahl. 1995. Interval Methods for Bounding the Range of Polynomials and Solving Systems of Nonlinear Equations. Ph.D. Dissertation. – reference: Y. Hu, T.-M. Li, L. Anderson, J. Ragan-Kelley, and F. Durand. 2019. Taichi: a language for high-performance computation on spatially sparse data structures. ACM Transactions on Graphics 38, 6 (Nov. 2019), 1–16. – reference: J.A. Baerentzen and H. Aanaes. 2005. Signed distance computation using the angle weighted pseudonormal. IEEE Transactions on Visualization and Computer Graphics 11, 3 (2005), 243–253. – reference: Z. Marschner, P. Zhang, D. Palmer, and J. Solomon. 2021. Sum-of-squares geometry processing. ACM Trans. Graph. 40, 6, Article 253 (Dec. 2021), 13 pages. – reference: M. Attene. 2025. NFG - Numbers For Geometry. https://github.com/MarcoAttene/NFG – volume-title: CVX: Matlab Software for Disciplined Convex Programming, version 2.0. https://cvxr.com/cvx. year: 2012 ident: e_1_2_1_16_1 – ident: e_1_2_1_66_1 – ident: e_1_2_1_5_1 doi: 10.1142/S0218195908002647 – volume-title: Proceedings of the 2021 International Symposium on Symbolic and Algebraic Computation (Virtual Event, Russian Federation) (ISSAC '21) ident: e_1_2_1_27_1 – ident: e_1_2_1_3_1 doi: 10.1201/b22086 – ident: e_1_2_1_51_1 – ident: e_1_2_1_56_1 doi: 10.1145/166117.166158 – ident: e_1_2_1_37_1 doi: 10.1145/2866569 – ident: e_1_2_1_40_1 doi: 10.1145/3450626.3459767 – volume-title: Range Functions of Any Convergence Order and Their Amortized Complexity Analysis. In Computer Algebra in Scientific Computing: 25th International Workshop, CASC 2023 (Havana, Cuba). Springer-Verlag ident: e_1_2_1_28_1 – ident: e_1_2_1_53_1 doi: 10.1145/2766947 – ident: e_1_2_1_17_1 doi: 10.1016/j.tcs.2006.05.011 – ident: e_1_2_1_46_1 doi: 10.1145/3478513.3480551 – ident: e_1_2_1_13_1 doi: 10.1145/3687960 – ident: e_1_2_1_48_1 doi: 10.7717/peerj-cs.103 – ident: e_1_2_1_26_1 doi: 10.1145/3520484 – ident: e_1_2_1_18_1 – ident: e_1_2_1_35_1 doi: 10.1016/j.cad.2012.10.010 – ident: e_1_2_1_4_1 – volume: 18 start-page: 3 year: 1997 ident: e_1_2_1_52_1 article-title: Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates publication-title: Discrete & Computational Geometry – volume-title: ACM SIGGRAPH 2004 Course Notes ident: e_1_2_1_24_1 – ident: e_1_2_1_50_1 – ident: e_1_2_1_31_1 doi: 10.1016/j.jcp.2012.08.051 – volume: 12 start-page: 2 year: 1983 ident: e_1_2_1_25_1 article-title: An interval Newton method publication-title: Appl. Math. Comput. – ident: e_1_2_1_41_1 doi: 10.1145/3662181 – ident: e_1_2_1_22_1 doi: 10.1007/978-1-84800-155-8_7 – ident: e_1_2_1_62_1 doi: 10.1145/3460775 – ident: e_1_2_1_33_1 doi: 10.1109/TVCG.2006.56 – ident: e_1_2_1_64_1 – ident: e_1_2_1_2_1 – ident: e_1_2_1_67_1 doi: 10.1111/cgf.14395 – ident: e_1_2_1_11_1 doi: 10.1145/2185520.2185592 – ident: e_1_2_1_32_1 doi: 10.5555/2633467.2633565 – ident: e_1_2_1_47_1 doi: 10.1007/978-3-642-14743-2_13 – ident: e_1_2_1_39_1 doi: 10.1016/j.cad.2015.10.004 – ident: e_1_2_1_9_1 doi: 10.1016/j.cagd.2010.04.004 – volume-title: Sum-of-Squares Collision Detection for Curved Shapes and Paths. In ACM SIGGRAPH 2023 Conference Proceedings ident: e_1_2_1_65_1 – ident: e_1_2_1_21_1 doi: 10.1016/S0377-0427(03)00422-9 – ident: e_1_2_1_61_1 doi: 10.1111/cgf.14479 – volume: 4 volume-title: Proceedings of the 41st IEEE Conference on Decision and Control year: 2002 ident: e_1_2_1_30_1 – ident: e_1_2_1_7_1 – ident: e_1_2_1_12_1 doi: 10.1109/TSMCB.2005.850172 – ident: e_1_2_1_23_1 doi: 10.1109/2945.910820 – ident: e_1_2_1_59_1 doi: 10.1145/2661229.2661237 – volume-title: FPG: A code generator for fast and certified geometric predicates. In Real numbers and computers. 47–60. year: 2008 ident: e_1_2_1_49_1 – volume: 27 start-page: 63 year: 2020 ident: e_1_2_1_38_1 article-title: Reducing pessimism in Interval Analysis using B-splines Properties: Application to Robotics publication-title: Reliable Computing – ident: e_1_2_1_19_1 doi: 10.1007/s11590-016-1023-7 – ident: e_1_2_1_60_1 doi: 10.1111/cgf.14080 – ident: e_1_2_1_63_1 doi: 10.1145/2601097.2601114 – ident: e_1_2_1_6_1 doi: 10.1016/j.cad.2020.102856 – volume-title: Proceedings of the ACM on Programming Languages 1, OOPSLA year: 2017 ident: e_1_2_1_36_1 – ident: e_1_2_1_54_1 – ident: e_1_2_1_45_1 doi: 10.1111/cgf.14074 – volume-title: Proceedings of the third ACM symposium on Symbolic and algebraic computation - SYMSAC '76 (SYMSAC '76) ident: e_1_2_1_15_1 – ident: e_1_2_1_29_1 doi: 10.1145/3355089.3356506 – ident: e_1_2_1_34_1 doi: 10.1016/j.cag.2019.03.014 – ident: e_1_2_1_44_1 doi: 10.1111/cgf.14074 – volume-title: Interval Analysis For Computer Graphics. ACM SIGGRAPH year: 1992 ident: e_1_2_1_55_1 – volume-title: Proc. ACM Program. Lang. 6, POPL, Article 3 (Jan. year: 2022 ident: e_1_2_1_43_1 – ident: e_1_2_1_57_1 doi: 10.1016/j.cagd.2021.101967 – ident: e_1_2_1_14_1 doi: 10.1111/1467-8659.00236 – ident: e_1_2_1_42_1 doi: 10.1145/3478513.3480506 – volume: 35 year: 2016 ident: e_1_2_1_10_1 article-title: Why New Programming Languages for Simulation publication-title: ACM Trans. Graph. – ident: e_1_2_1_58_1 – ident: e_1_2_1_1_1 doi: 10.1145/3519939.3523447 – ident: e_1_2_1_20_1 doi: 10.1145/3450626.3459802 – ident: e_1_2_1_8_1 doi: 10.1109/TVCG.2005.49 |
SSID | ssj0006446 |
Score | 2.4733548 |
Snippet | Many problems in computer graphics can be formulated as finding the global minimum of a function subject to a set of non-linear constraints (Minimize), or... |
SourceID | crossref acm |
SourceType | Index Database Publisher |
StartPage | 1 |
SubjectTerms | Animation Compilers Computer graphics Computing methodologies Context specific languages Continuous optimization Design and analysis of algorithms Domain specific languages Interval arithmetic Mathematical analysis Mathematical optimization Mathematics of computing Mesh geometry models Nonconvex optimization Nonlinear equations Numerical analysis Physical simulation Shape modeling Software and its engineering Software notations and tools Source code generation Theory of computation |
SubjectTermsDisplay | Computing methodologies -- Computer graphics -- Animation -- Physical simulation Computing methodologies -- Computer graphics -- Shape modeling -- Mesh geometry models Mathematics of computing -- Mathematical analysis -- Nonlinear equations Mathematics of computing -- Mathematical analysis -- Numerical analysis -- Interval arithmetic Software and its engineering -- Software notations and tools -- Compilers -- Source code generation Software and its engineering -- Software notations and tools -- Context specific languages -- Domain specific languages Theory of computation -- Design and analysis of algorithms -- Mathematical optimization -- Continuous optimization -- Nonconvex optimization |
Title | MiSo: A DSL for Robust and Efficient Solve and MInimize Problems |
URI | https://dl.acm.org/doi/10.1145/3731207 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYKXOBQAQV1oSAfek27iZ045dQVLFoQy4GAVPWC_Iq6EiQrSDjsr2f8SDC0EoVLFHnjSOv58s2MPQ-Evg61YFKlw0gqSiJacgo8KGikQfmbgnVEMpMoPD3PJlf09FcaHLTb7JJGfJOLf-aVvEeqMAZyNVmyb5Bs_1IYgHuQL1xBwnD9LxlPZ0XtUsuPijMbMHhRi_beBY2PbXEIc9Rf1DcPPqLipJrdzhba5AeYPjL3oW06OpyajhFd-3B7jmDrWQcB8YWJHG1cCMCxqUMBQOrZtZ3P7cbruAqHJ63fkv49W_yp2x5hDVjr2qcL-af97kOS9rFvHUkBQ0TGrXL6xJNoyiJGXLucjmVdlUePJhpQZhzoXkfFf7M6NQUwCCNx4lrkPq-b_UKf9VGGLuc6vfYTl9BKAr4EkOHK6Gh6VvQKG0xCe6Td_RWXW22mfvdTjekibwPTJbBBLtfRR-884JFDwgb6oKtNtBaUlPyEfhpMHOARBkRgQAR2iMAgfdwjAltE2LEOEbhDxBa6Oh5fHk4i3yUj4uB7s0iCA8vho8qpUKXKiOIizhnXeclT-NIoU0xkhGqwLOMkk8M0JzIuS6FjkFCuOdlGy1Vd6c8I5ylPYlUyARqSyoQL9qNUpi4XGfKMKzFAm7AM13NXB6Vb1wHC3bL0P71Y-p3XH9lFq0_4-oKWm7tW74G914h9L69H0jNRWA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MiSo%3A+A+DSL+for+Robust+and+Efficient+Solve+and+MInimize+Problems&rft.jtitle=ACM+transactions+on+graphics&rft.au=Sichetti%2C+Federico&rft.au=Puppo%2C+Enrico&rft.au=Huang%2C+Zizhou&rft.au=Attene%2C+Marco&rft.date=2025-08-01&rft.issn=0730-0301&rft.eissn=1557-7368&rft.volume=44&rft.issue=4&rft.spage=1&rft.epage=18&rft_id=info:doi/10.1145%2F3731207&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_3731207 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-0301&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-0301&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-0301&client=summon |