MiSo: A DSL for Robust and Efficient Solve and MInimize Problems

Many problems in computer graphics can be formulated as finding the global minimum of a function subject to a set of non-linear constraints (Minimize), or finding all solutions of a system of non-linear constraints (Solve). We introduce MiSo, a domain-specific language and compiler for generating ef...

Full description

Saved in:
Bibliographic Details
Published inACM transactions on graphics Vol. 44; no. 4; pp. 1 - 18
Main Authors Sichetti, Federico, Puppo, Enrico, Huang, Zizhou, Attene, Marco, Zorin, Denis, Panozzo, Daniele
Format Journal Article
LanguageEnglish
Published New York, NY, USA ACM 01.08.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Many problems in computer graphics can be formulated as finding the global minimum of a function subject to a set of non-linear constraints (Minimize), or finding all solutions of a system of non-linear constraints (Solve). We introduce MiSo, a domain-specific language and compiler for generating efficient C++ code for low-dimensional Minimize and Solve problems, that uses interval methods to guarantee conservative results while using floating point arithmetic. We demonstrate that MiSo-generated code shows competitive performance compared to hand-optimized codes for several computer graphics problems, including high-order collision detection with non-linear trajectories, surface-surface intersection, and geometrical validity checks for finite element simulation.
AbstractList Many problems in computer graphics can be formulated as finding the global minimum of a function subject to a set of non-linear constraints (Minimize), or finding all solutions of a system of non-linear constraints (Solve). We introduce MiSo, a domain-specific language and compiler for generating efficient C++ code for low-dimensional Minimize and Solve problems, that uses interval methods to guarantee conservative results while using floating point arithmetic. We demonstrate that MiSo-generated code shows competitive performance compared to hand-optimized codes for several computer graphics problems, including high-order collision detection with non-linear trajectories, surface-surface intersection, and geometrical validity checks for finite element simulation.
ArticleNumber 120
Author Sichetti, Federico
Puppo, Enrico
Huang, Zizhou
Panozzo, Daniele
Zorin, Denis
Attene, Marco
Author_xml – sequence: 1
  givenname: Federico
  orcidid: 0000-0003-2805-306X
  surname: Sichetti
  fullname: Sichetti, Federico
  email: federico.sichetti@edu.unige.it
  organization: Università di Genova, Genova, Italy
– sequence: 2
  givenname: Enrico
  orcidid: 0000-0001-9780-5283
  surname: Puppo
  fullname: Puppo, Enrico
  email: enrico.puppo@unige.it
  organization: Università di Genova, Genova, Italy
– sequence: 3
  givenname: Zizhou
  orcidid: 0009-0007-6529-4694
  surname: Huang
  fullname: Huang, Zizhou
  email: zizhou@nyu.edu
  organization: New York University, New York, NY, USA
– sequence: 4
  givenname: Marco
  orcidid: 0000-0002-9012-7245
  surname: Attene
  fullname: Attene, Marco
  email: jaiko@ge.imati.cnr.it
  organization: CNR IMATI, Genova, Italy
– sequence: 5
  givenname: Denis
  orcidid: 0000-0001-7733-5501
  surname: Zorin
  fullname: Zorin, Denis
  email: dzorin@cs.nyu.edu
  organization: New York University, New York, NY, USA
– sequence: 6
  givenname: Daniele
  orcidid: 0000-0003-1183-2454
  surname: Panozzo
  fullname: Panozzo, Daniele
  email: panozzo@nyu.edu
  organization: New York University, New York, NY, USA
BookMark eNo9j01LAzEYhINUsK3i3VNunlbzbj7ryVKrFrYorp6XJJtAZHcjSRX011tt9TQw8zDMTNBoiIND6BTIBQDjl1RSKIk8QGPgXBaSCjVCYyIpKQglcIQmOb8SQgRjYoyu16GOV3iOb-oK-5jwUzTveYP10OKl98EGN2xwHbsP9-utV0Pow5fDjymazvX5GB163WV3stcperldPi_ui-rhbrWYV4UGLmRhSz7TckYVM61vBW21ASW1U15zaiWTrTSCMicoh1JYwhW14L1xsN2vnKZTdL7rtSnmnJxv3lLodfpsgDQ_x5v98S15tiO17f-hv_AbRuVSJQ
Cites_doi 10.1142/S0218195908002647
10.1201/b22086
10.1145/166117.166158
10.1145/2866569
10.1145/3450626.3459767
10.1145/2766947
10.1016/j.tcs.2006.05.011
10.1145/3478513.3480551
10.1145/3687960
10.7717/peerj-cs.103
10.1145/3520484
10.1016/j.cad.2012.10.010
10.1016/j.jcp.2012.08.051
10.1145/3662181
10.1007/978-1-84800-155-8_7
10.1145/3460775
10.1109/TVCG.2006.56
10.1111/cgf.14395
10.1145/2185520.2185592
10.5555/2633467.2633565
10.1007/978-3-642-14743-2_13
10.1016/j.cad.2015.10.004
10.1016/j.cagd.2010.04.004
10.1016/S0377-0427(03)00422-9
10.1111/cgf.14479
10.1109/TSMCB.2005.850172
10.1109/2945.910820
10.1145/2661229.2661237
10.1007/s11590-016-1023-7
10.1111/cgf.14080
10.1145/2601097.2601114
10.1016/j.cad.2020.102856
10.1111/cgf.14074
10.1145/3355089.3356506
10.1016/j.cag.2019.03.014
10.1016/j.cagd.2021.101967
10.1111/1467-8659.00236
10.1145/3478513.3480506
10.1145/3519939.3523447
10.1145/3450626.3459802
10.1109/TVCG.2005.49
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1145/3731207
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-7368
EndPage 18
ExternalDocumentID 10_1145_3731207
3731207
GrantInformation_xml – fundername: NSF (National Science Foundation)
  grantid: OAC-2411349; IIS-2313156
  funderid: https://doi.org/10.13039/100000001
GroupedDBID --Z
-DZ
-~X
.DC
23M
2FS
4.4
5GY
5VS
6J9
85S
8US
AAKMM
AALFJ
AAYFX
ABPPZ
ACGFO
ACGOD
ACM
ADBCU
ADL
ADMLS
AEBYY
AEFXT
AEJOY
AENEX
AENSD
AETEA
AFWIH
AFWXC
AIKLT
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
BDXCO
CCLIF
CS3
F5P
FEDTE
GUFHI
HGAVV
I07
LHSKQ
P1C
P2P
PQQKQ
RNS
ROL
TWZ
UHB
UPT
WH7
XSW
ZCA
~02
9M8
AAFWJ
AAYXX
ABFSI
AI.
CITATION
E.L
EBS
EJD
HF~
MVM
NHB
OHT
UKR
VH1
XJT
XOL
ZY4
ID FETCH-LOGICAL-a1567-c259a79384bdfd63dab187ae8fa53c747d7b634e635126c0583c1ffbe13688ea3
ISSN 0730-0301
IngestDate Thu Jul 31 00:10:29 EDT 2025
Mon Jul 28 16:30:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This work is licensed under Creative Commons Attribution International 4.0.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a1567-c259a79384bdfd63dab187ae8fa53c747d7b634e635126c0583c1ffbe13688ea3
ORCID 0000-0002-9012-7245
0000-0001-9780-5283
0000-0001-7733-5501
0000-0003-2805-306X
0009-0007-6529-4694
0000-0003-1183-2454
OpenAccessLink https://dl.acm.org/doi/10.1145/3731207
PageCount 18
ParticipantIDs crossref_primary_10_1145_3731207
acm_primary_3731207
PublicationCentury 2000
PublicationDate 20250801
2025-08-00
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 20250801
  day: 01
PublicationDecade 2020
PublicationPlace New York, NY, USA
PublicationPlace_xml – name: New York, NY, USA
PublicationTitle ACM transactions on graphics
PublicationTitleAbbrev ACM TOG
PublicationYear 2025
Publisher ACM
Publisher_xml – name: ACM
References M. Bartoň, I. Hanniel, G. Elber, and M.-S. Kim. 2010. Precise Hausdorff distance computation between polygonal meshes. Computer Aided Geometric Design 27, 8 (2010), 580–591. https://www.sciencedirect.com/science/article/pii/S016783961000049X Advances in Applied Geometry.
K. Hormann, C. Yap, and Y.S. Zhang. 2023. Range Functions of Any Convergence Order and Their Amortized Complexity Analysis. In Computer Algebra in Scientific Computing: 25th International Workshop, CASC 2023 (Havana, Cuba). Springer-Verlag, Berlin, Heidelberg, 162–182.
Y. Kang, S.-H. Yoon, M.-H. Kyung, and M.-S. Kim. 2019. Fast and robust computation of the Hausdorff distance between triangle mesh and quad mesh for near-zero cases. Computers & Graphics 81 (2019), 61–72.
T. Akenine-Möller, E. Haines, N. Hoffman, A. Pesce, M. Iwanicki, and S. Hillaire. 2018. Real-Time Rendering 4th Edition. A.K. Peters/CRC Press, Boca Raton, FL, USA.
B. Lévy. 2016. Robustness and efficiency of geometric programs: The Predicate Construction Kit (PCK). Computer-Aided Design 72 (2016), 3–12.
E.R. Hansen and R.I. Greenberg. 1983. An interval Newton method. Appl. Math. Comput. 12, 2–3 (May 1983), 89–98.
J.P. Lim and S. Nagarakatte. 2022. One polynomial approximation to produce correctly rounded results of an elementary function for multiple representations and rounding modes. Proc. ACM Program. Lang. 6, POPL, Article 3 (Jan. 2022), 28 pages.
T. Brochu, E. Edwards, and R. Bridson. 2012. Efficient geometrically exact continuous collision detection. ACM Trans. Graph. 31, 4, Article 96 (July 2012), 7 pages.
M. Attene. 2020. Indirect predicates for Geometric Constructions. Computer-Aided Design 126 (2020), 102856.
J.M.Snyder. 1991. Generative Modeling: An Approach to High Level Shape Design for Computer Graphics and CAD. Ph.D. Dissertation.
G. Louis Bernstein and F. Kjolstad. 2016. Why New Programming Languages for Simulation? ACM Trans. Graph. 35, 2, Article 20e (May 2016), 3 pages.
J. Smith and S. Schaefer. 2015. Bijective Parameterization with Free Boundaries. ACM Trans. Graph. 34, 4, Article 70 (2015), 9 pages.
Z. Marschner, D. Palmer, P. Zhang, and J. Solomon. 2020b. Hexahedral Mesh Repair via Sum-of-Squares Relaxation. Computer Graphics Forum 39, 5 (Aug. 2020), 133–147.
J.A. Carretero and M.A. Nahon. 2005. Solving minimum distance problems with convex or concave bodies using combinatorial global optimization algorithms. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 35, 6 (2005), 1144–1155.
X. Chen, C. Yu, X. Ni, M. Chu, B. Wang, and B. Chen. 2024. A Time-Dependent Inclusion-Based Method for Continuous Collision Detection between Parametric Surfaces. ACM SIGGRAPH Computer Graphics 43, 6 (2024).
M. Grant and S. Boyd. 2008. Graph implementations for nonsmooth convex programs. In Recent Advances in Learning and Control, V. Blondel, S. Boyd, and H. Kimura (Eds.). Springer-Verlag Limited, 95–110.
M.B. Monagan, K.O. Geddes, K. M. Heal, G. Labahn, S.M. Vorkoetter, J. McCarron, and P. DeMarco. 2005. Maple 10 Programming Guide. Maplesoft, Waterloo ON, Canada.
Y.-J. Kim, Y.-T. Oh, S.-H. Yoon, M.-S. Kim, and G. Elber. 2013. Efficient Hausdorff Distance computation for freeform geometric models in close proximity. Computer-Aided Design 45, 2 (2013), 270–276. Solid and Physical Modeling 2012.
B. Wang,. Ferguson, X. Jiang, M. Attene, D. Panozzo, and T. Schneider. 2022. Fast and Exact Root Parity for Continuous Collision Detection. Computer Graphics Forum (Proceedings of Eurographics) 41, 2 (2022), 9 pages.
X. Tang, T. Schneider, S. Kamil, A. Panda, J. Li, and D. Panozzo. 2020. EGGS: Sparsity-Specific Code Generation. Computer Graphics Forum 39, 5 (Aug. 2020), 209–219.
K. Hormann, L. Kania, and C. Yap. 2021. Novel Range Functions via Taylor Expansions and Recursive Lagrange Interpolation with Application to Real Root Isolation. In Proceedings of the 2021 International Symposium on Symbolic and Algebraic Computation (Virtual Event, Russian Federation) (ISSAC '21). ACM, New York, NY, USA, 193–200.
M. Aanjaneya, J.P. Lim, and S. Nagarakatte. 2024. The RLIBM Project. https://github.com/rutgers-apl/The-RLIBM-Project
S. Lengagne, R. Kalawoun, F. Bouchon, and Y. Mezouar. 2020. Reducing pessimism in Interval Analysis using B-splines Properties: Application to Robotics. Reliable Computing 27 (2020), 63–87.
Z. Zhang, Y.-J. Chiang, and C. Yap. 2024. Theory and Explicit Design of a Path Planner for an SE(3) Robot. arXiv:2407.05135 [cs.RO] https://arxiv.org/abs/2407.05135
Z. Marschner, D. Palmer, P. Zhang, and J. Solomon. 2020a. Hexahedral Mesh Repair via Sum-of-Squares Relaxation. Computer Graphics Forum 39, 5 (Aug. 2020), 133–147.
Z. Ferguson, M. Li, T. Schneider, F. Gil-Ureta, T. Langlois, C. Jiang, D. Zorin, D.M. Kaufman, and D. Panozzo. 2021. Intersection-free Rigid Body Dynamics. ACM Transactions on Graphics (SIGGRAPH) 40, 4, Article 183 (2021).
V. Stahl. 1995. Interval Methods for Bounding the Range of Polynomials and Solving Systems of Nonlinear Equations. Ph.D. Dissertation.
J. R. Shewchuk. 1997. Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates. Discrete & Computational Geometry 18, 3 (Oct. 1997), 305–363.
B. Wang, Z. Ferguson, T. Schneider, X. Jiang, M. Attene, and D. Panozzo. 2021. A Large-scale Benchmark and an Inclusion-based Algorithm for Continuous Collision Detection. ACM Trans. Graph. 40, 5, Article 188 (2021), 16 pages.
J. Nocedal and S.J. Wright. 2006. Numerical Optimization. Springer, New York.
J.A. Baerentzen and H. Aanaes. 2005. Signed distance computation using the angle weighted pseudonormal. IEEE Transactions on Visualization and Computer Graphics 11, 3 (2005), 243–253.
S.-H. Son, M.-S. Kim, and G. Elber. 2021. Precise Hausdorff distance computation for freeform surfaces based on computations with osculating toroidal patches. Computer Aided Geometric Design 86 (2021), 101967.
A. Meurer, C.P. Smith, M. Paprocki, O. Čertík, S. B. Kirpichev, M. Rocklin, A. Kumar, S. Ivanov, J.K. Moore, S. Singh, T. Rathnayake, S. Vig, B.E. Granger, R.P. Muller, F. Bonazzi, H. Gupta, S. Vats, F. Johansson, F. Pedregosa, M.J. Curry, A.R. Terrel, Š. Roučka, A. Saboo, I. Fernando, S. Kulal, R. Cimrman, and A. Scopatz. 2017. SymPy: symbolic computing in Python. PeerJ Computer Science 3 (2017), e103.
Etienne De Klerk, Monique Laurent, and Zhao Sun. 2014. An error analysis for polynomial optimization over the simplex based on the multivariate hypergeometric distribution. http://arxiv.org/abs/1407.2108 arXiv:1407.2108 [math].
M. Aanjaneya, J.P. Lim, and S. Nagarakatte. 2022. Progressive polynomial approximations for fast correctly rounded math libraries. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation (San Diego, CA, USA) (PLDI 2022). ACM, New York, NY, USA, 552–565.
G.E. Collins and A.G. Akritas. 1976. Polynomial real root isolation using Descarte's rule of signs. In Proceedings of the third ACM symposium on Symbolic and algebraic computation - SYMSAC '76 (SYMSAC '76). ACM Press, 272–275.
A. Guezlec. 2001. "Meshsweeper": dynamic point-to-polygonal mesh distance and applications. IEEE Transactions on Visualization and Computer Graphics 7, 1 (2001), 47–61.
A. Johnen, J.-F. Remacle, and C. Geuzaine. 2013. Geometrical validity of curvilinear finite elements. J. Comput. Phys. 233 (2013), 359–372.
F. Kjolstad, S. Kamil, J. Ragan-Kelley, D.I.W. Levin, S. Sueda, D. Chen, E. Vouga, D.M. Kaufman, G. Kanwar, W. Matusik, and S. Amarasinghe. 2016. Simit: A Language for Physical Simulation. ACM Trans. Graph. 35, 2, Article 20 (May 2016), 21 pages.
A. Meyer and S. Pion. 2008. FPG: A code generator for fast and certified geometric predicates. In Real numbers and computers. 47–60.
M.W. Jones, J.A. Baerentzen, and M. Sramek. 2006. 3D distance fields: a survey of techniques and applications. IEEE Transactions on Visualization and Computer Graphics 12, 4 (2006), 581–599.
J Snyder. 1992. Interval Analysis For Computer Graphics. ACM SIGGRAPH (1992), 121–130.
Y. Hu, T.-M. Li, L. Anderson, J. Ragan-Kelley, and F. Durand. 2019. Taichi: a language for high-performance computation on spatially sparse data structures. ACM Transactions on Graphics 38, 6 (Nov. 2019), 1–16.
J. Snyder, A.R. Woodbury, K. Fleischer, B. Currin, and A.H. Barr. 1993. Interval Methods for Multi-Point Collisions between Time-Dependent Curved Surfaces. In ACM SIGGRAPH. ACM.
M. Tang, R. Tong, Z. Wang, and D. Manocha. 2014. Fast and exact continuous collision detection with Bernstein sign classification. ACM Transactions on Graphics 33, 6 (2014), 1–8. 10.1145/2661229.2661237
Y. Li, S. Kamil, K. Crane, A. Jacobson, and Y. Gingold. 2024. I♡Mesh: A DSL for Mesh Processing. ACM Trans. Graph. 43, 6 (2024).
Y. Li, S. Kamil, A. Jacobson, and Y. Gingold. 2021a. I♡LA: Compilable Markdown for Linear Algebra. ACM Transactions on Graphics (TOG) 40, 6 (2021).
Z. Marschner, P. Zhang, D. Palmer, and J. Solomon. 2021. Sum-of-squares geometry processing. ACM Trans. Graph. 40, 6, Article 253 (Dec. 2021), 13 pages.
L. Jaulin, I. Braems, and E. Walter. 2002. Interval methods for nonlinear identification and robust control. In Proceedings of the 41st IEEE Conference on Decision and Control, 2002., Vol. 4. IEEE, Las Vegas, NV, USA, 4676–4681.
E. De Klerk, M. Laurent, Z. Sun, and J.C. Vera. 2017. On the convergence rate of grid search for polynomial optimization over the simplex. Optimization Letters 11, 3 (March 2017), 597–608.
CVX Research, Inc. 2012. CVX: Matlab Software for Disciplined Convex Programming, version 2.0. https://cvxr.com/cvx.
J.P. Merlet. 2007. Interval Analysis and Robotics. Robotics Research 66, 147–156. 10.1007/978-3-642-14743-2_13
A. Johnen, J. F. Remacle, and C. Geuzaine. 2014. Geometrical Validity of High-Order Triangular Finite Elements. Eng. with Comput. 30, 3 (2014), 375–382.
P. Zhang, Z. Marschner, J. Solomon, and R. Tamstorf. 2023. Sum-of-Squares Collision Detection for Curved Shapes and Paths. In ACM SIGGRAPH 2023 Conference Proceedings (Los Angeles, CA, USA). ACM, New York,
e_1_2_1_60_1
Kjolstad F. (e_1_2_1_36_1) 2017
Snyder J (e_1_2_1_55_1) 1992
e_1_2_1_20_1
e_1_2_1_41_1
e_1_2_1_66_1
e_1_2_1_45_1
e_1_2_1_62_1
e_1_2_1_22_1
e_1_2_1_64_1
e_1_2_1_26_1
e_1_2_1_47_1
Zhang P. (e_1_2_1_65_1)
Hadap S. (e_1_2_1_24_1)
Hormann K. (e_1_2_1_27_1)
Jaulin L. (e_1_2_1_30_1) 2002; 4
e_1_2_1_31_1
e_1_2_1_54_1
e_1_2_1_8_1
e_1_2_1_56_1
e_1_2_1_6_1
e_1_2_1_12_1
e_1_2_1_35_1
e_1_2_1_50_1
e_1_2_1_4_1
e_1_2_1_33_1
e_1_2_1_2_1
e_1_2_1_39_1
Lim J.P. (e_1_2_1_43_1) 2022
e_1_2_1_14_1
e_1_2_1_37_1
e_1_2_1_58_1
e_1_2_1_18_1
Hormann K. (e_1_2_1_28_1)
Research CVX (e_1_2_1_16_1) 2012
Louis Bernstein G. (e_1_2_1_10_1) 2016; 35
e_1_2_1_42_1
e_1_2_1_40_1
e_1_2_1_67_1
e_1_2_1_23_1
e_1_2_1_46_1
e_1_2_1_61_1
e_1_2_1_21_1
e_1_2_1_44_1
e_1_2_1_63_1
Meyer A. (e_1_2_1_49_1) 2008
e_1_2_1_48_1
e_1_2_1_29_1
Collins G.E. (e_1_2_1_15_1)
e_1_2_1_7_1
Shewchuk J. R. (e_1_2_1_52_1) 1997; 18
e_1_2_1_5_1
Hansen E.R. (e_1_2_1_25_1) 1983; 12
e_1_2_1_57_1
e_1_2_1_3_1
e_1_2_1_13_1
e_1_2_1_34_1
e_1_2_1_51_1
e_1_2_1_1_1
e_1_2_1_11_1
e_1_2_1_32_1
Lengagne S. (e_1_2_1_38_1) 2020; 27
e_1_2_1_53_1
e_1_2_1_17_1
e_1_2_1_59_1
e_1_2_1_9_1
e_1_2_1_19_1
References_xml – reference: A. Johnen, J.-F. Remacle, and C. Geuzaine. 2013. Geometrical validity of curvilinear finite elements. J. Comput. Phys. 233 (2013), 359–372.
– reference: Z. Zhang, Y.-J. Chiang, and C. Yap. 2024. Theory and Explicit Design of a Path Planner for an SE(3) Robot. arXiv:2407.05135 [cs.RO] https://arxiv.org/abs/2407.05135
– reference: S. Hadap, D. Eberle, P. Volino, M.C. Lin, S. Redon, and C. Ericson. 2004. Collision detection and proximity queries. In ACM SIGGRAPH 2004 Course Notes (Los Angeles, CA) (SIGGRAPH '04). ACM, New York, NY, USA, 15–es.
– reference: J. Garloff, C. Jansson, and A.P. Smith. 2003. Lower bound functions for polynomials. J. Comput. Appl. Math. 157, 1 (2003), 207–225.
– reference: Y. Li, S. Kamil, A. Jacobson, and Y. Gingold. 2021a. I♡LA: Compilable Markdown for Linear Algebra. ACM Transactions on Graphics (TOG) 40, 6 (2021).
– reference: Z. Marschner, D. Palmer, P. Zhang, and J. Solomon. 2020a. Hexahedral Mesh Repair via Sum-of-Squares Relaxation. Computer Graphics Forum 39, 5 (Aug. 2020), 133–147.
– reference: B. Lévy. 2016. Robustness and efficiency of geometric programs: The Predicate Construction Kit (PCK). Computer-Aided Design 72 (2016), 3–12.
– reference: S.-H. Son, M.-S. Kim, and G. Elber. 2021. Precise Hausdorff distance computation for freeform surfaces based on computations with osculating toroidal patches. Computer Aided Geometric Design 86 (2021), 101967.
– reference: H. Alt and L. Scharf. 2008. Computing the Hhausdorff Distance between Curved Objects. International Journal of Computational Geometry & Applications 18, 04 (2008), 307–320.
– reference: X. Chen, C. Yu, X. Ni, M. Chu, B. Wang, and B. Chen. 2024. A Time-Dependent Inclusion-Based Method for Continuous Collision Detection between Parametric Surfaces. ACM SIGGRAPH Computer Graphics 43, 6 (2024).
– reference: T. Akenine-Möller, E. Haines, N. Hoffman, A. Pesce, M. Iwanicki, and S. Hillaire. 2024. Real-Time Rendering - Ray Tracing Resources Page. https://www.realtimerendering.com/intersections.html
– reference: S. Lengagne, R. Kalawoun, F. Bouchon, and Y. Mezouar. 2020. Reducing pessimism in Interval Analysis using B-splines Properties: Application to Robotics. Reliable Computing 27 (2020), 63–87.
– reference: Z. Ferguson, M. Li, T. Schneider, F. Gil-Ureta, T. Langlois, C. Jiang, D. Zorin, D.M. Kaufman, and D. Panozzo. 2021. Intersection-free Rigid Body Dynamics. ACM Transactions on Graphics (SIGGRAPH) 40, 4, Article 183 (2021).
– reference: M. Li, D.M. Kaufman, and C. Jiang. 2021b. Codimensional incremental potential contact. ACM Trans. Graph. 40, 4, Article 170 (July 2021), 24 pages.
– reference: M. Aanjaneya, J.P. Lim, and S. Nagarakatte. 2024. The RLIBM Project. https://github.com/rutgers-apl/The-RLIBM-Project
– reference: J.P. Merlet. 2007. Interval Analysis and Robotics. Robotics Research 66, 147–156. 10.1007/978-3-642-14743-2_13
– reference: J.M.Snyder. 1991. Generative Modeling: An Approach to High Level Shape Design for Computer Graphics and CAD. Ph.D. Dissertation.
– reference: T. Akenine-Möller, E. Haines, N. Hoffman, A. Pesce, M. Iwanicki, and S. Hillaire. 2018. Real-Time Rendering 4th Edition. A.K. Peters/CRC Press, Boca Raton, FL, USA.
– reference: K. Hormann, C. Yap, and Y.S. Zhang. 2023. Range Functions of Any Convergence Order and Their Amortized Complexity Analysis. In Computer Algebra in Scientific Computing: 25th International Workshop, CASC 2023 (Havana, Cuba). Springer-Verlag, Berlin, Heidelberg, 162–182.
– reference: CVX Research, Inc. 2012. CVX: Matlab Software for Disciplined Convex Programming, version 2.0. https://cvxr.com/cvx.
– reference: A. Johnen, J. F. Remacle, and C. Geuzaine. 2014. Geometrical Validity of High-Order Triangular Finite Elements. Eng. with Comput. 30, 3 (2014), 375–382.
– reference: E. De Klerk, M. Laurent, Z. Sun, and J.C. Vera. 2017. On the convergence rate of grid search for polynomial optimization over the simplex. Optimization Letters 11, 3 (March 2017), 597–608.
– reference: B. Wang,. Ferguson, X. Jiang, M. Attene, D. Panozzo, and T. Schneider. 2022. Fast and Exact Root Parity for Continuous Collision Detection. Computer Graphics Forum (Proceedings of Eurographics) 41, 2 (2022), 9 pages.
– reference: J. R. Shewchuk. 1997. Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates. Discrete & Computational Geometry 18, 3 (Oct. 1997), 305–363.
– reference: J. Smith and S. Schaefer. 2015. Bijective Parameterization with Free Boundaries. ACM Trans. Graph. 34, 4, Article 70 (2015), 9 pages.
– reference: J. Nocedal and S.J. Wright. 2006. Numerical Optimization. Springer, New York.
– reference: A. Meurer, C.P. Smith, M. Paprocki, O. Čertík, S. B. Kirpichev, M. Rocklin, A. Kumar, S. Ivanov, J.K. Moore, S. Singh, T. Rathnayake, S. Vig, B.E. Granger, R.P. Muller, F. Bonazzi, H. Gupta, S. Vats, F. Johansson, F. Pedregosa, M.J. Curry, A.R. Terrel, Š. Roučka, A. Saboo, I. Fernando, S. Kulal, R. Cimrman, and A. Scopatz. 2017. SymPy: symbolic computing in Python. PeerJ Computer Science 3 (2017), e103.
– reference: A. Guezlec. 2001. "Meshsweeper": dynamic point-to-polygonal mesh distance and applications. IEEE Transactions on Visualization and Computer Graphics 7, 1 (2001), 47–61.
– reference: Z. Marschner, D. Palmer, P. Zhang, and J. Solomon. 2020b. Hexahedral Mesh Repair via Sum-of-Squares Relaxation. Computer Graphics Forum 39, 5 (Aug. 2020), 133–147.
– reference: Y.-J. Kim, Y.-T. Oh, S.-H. Yoon, M.-S. Kim, and G. Elber. 2013. Efficient Hausdorff Distance computation for freeform geometric models in close proximity. Computer-Aided Design 45, 2 (2013), 270–276. Solid and Physical Modeling 2012.
– reference: G.E. Collins and A.G. Akritas. 1976. Polynomial real root isolation using Descarte's rule of signs. In Proceedings of the third ACM symposium on Symbolic and algebraic computation - SYMSAC '76 (SYMSAC '76). ACM Press, 272–275.
– reference: M.B. Monagan, K.O. Geddes, K. M. Heal, G. Labahn, S.M. Vorkoetter, J. McCarron, and P. DeMarco. 2005. Maple 10 Programming Guide. Maplesoft, Waterloo ON, Canada.
– reference: F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amarasinghe. 2017. The tensor algebra compiler. Proceedings of the ACM on Programming Languages 1, OOPSLA (2017), 1–29.
– reference: P. Cignoni, C. Rocchini, and R. Scopigno. 1998. Metro: Measuring Error on Simplified Surfaces. Computer Graphics Forum 17, 2 (1998), 167–174.
– reference: Etienne De Klerk, Monique Laurent, and Zhao Sun. 2014. An error analysis for polynomial optimization over the simplex based on the multivariate hypergeometric distribution. http://arxiv.org/abs/1407.2108 arXiv:1407.2108 [math].
– reference: Wolfram Research, Inc. 2023. Mathematica, Version 13.3. https://www.wolfram.com/mathematica Champaign, IL.
– reference: G. Louis Bernstein and F. Kjolstad. 2016. Why New Programming Languages for Simulation? ACM Trans. Graph. 35, 2, Article 20e (May 2016), 3 pages.
– reference: M. Grant and S. Boyd. 2008. Graph implementations for nonsmooth convex programs. In Recent Advances in Learning and Control, V. Blondel, S. Boyd, and H. Kimura (Eds.). Springer-Verlag Limited, 95–110.
– reference: M. Tang, R. Tong, Z. Wang, and D. Manocha. 2014. Fast and exact continuous collision detection with Bernstein sign classification. ACM Transactions on Graphics 33, 6 (2014), 1–8. 10.1145/2661229.2661237
– reference: Huamin Wang. 2014. Defending continuous collision detection against errors. ACM Transactions on Graphics 33, 4 (July 2014), 1–10.
– reference: M. Bartoň, I. Hanniel, G. Elber, and M.-S. Kim. 2010. Precise Hausdorff distance computation between polygonal meshes. Computer Aided Geometric Design 27, 8 (2010), 580–591. https://www.sciencedirect.com/science/article/pii/S016783961000049X Advances in Applied Geometry.
– reference: P. Zhang, Z. Marschner, J. Solomon, and R. Tamstorf. 2023. Sum-of-Squares Collision Detection for Curved Shapes and Paths. In ACM SIGGRAPH 2023 Conference Proceedings (Los Angeles, CA, USA). ACM, New York, NY, USA, Article 76, 11 pages.
– reference: T. Brochu, E. Edwards, and R. Bridson. 2012. Efficient geometrically exact continuous collision detection. ACM Trans. Graph. 31, 4, Article 96 (July 2012), 7 pages.
– reference: J.A. Carretero and M.A. Nahon. 2005. Solving minimum distance problems with convex or concave bodies using combinatorial global optimization algorithms. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 35, 6 (2005), 1144–1155.
– reference: B. Wang, Z. Ferguson, T. Schneider, X. Jiang, M. Attene, and D. Panozzo. 2021. A Large-scale Benchmark and an Inclusion-based Algorithm for Continuous Collision Detection. ACM Trans. Graph. 40, 5, Article 188 (2021), 16 pages.
– reference: J Snyder. 1992. Interval Analysis For Computer Graphics. ACM SIGGRAPH (1992), 121–130.
– reference: M.W. Jones, J.A. Baerentzen, and M. Sramek. 2006. 3D distance fields: a survey of techniques and applications. IEEE Transactions on Visualization and Computer Graphics 12, 4 (2006), 581–599.
– reference: F. Kjolstad, S. Kamil, J. Ragan-Kelley, D.I.W. Levin, S. Sueda, D. Chen, E. Vouga, D.M. Kaufman, G. Kanwar, W. Matusik, and S. Amarasinghe. 2016. Simit: A Language for Physical Simulation. ACM Trans. Graph. 35, 2, Article 20 (May 2016), 21 pages.
– reference: E.R. Hansen and R.I. Greenberg. 1983. An interval Newton method. Appl. Math. Comput. 12, 2–3 (May 1983), 89–98.
– reference: M. Attene. 2020. Indirect predicates for Geometric Constructions. Computer-Aided Design 126 (2020), 102856.
– reference: X. Tang, T. Schneider, S. Kamil, A. Panda, J. Li, and D. Panozzo. 2020. EGGS: Sparsity-Specific Code Generation. Computer Graphics Forum 39, 5 (Aug. 2020), 209–219.
– reference: J.P. Lim and S. Nagarakatte. 2022. One polynomial approximation to produce correctly rounded results of an elementary function for multiple representations and rounding modes. Proc. ACM Program. Lang. 6, POPL, Article 3 (Jan. 2022), 28 pages.
– reference: M. Aanjaneya, J.P. Lim, and S. Nagarakatte. 2022. Progressive polynomial approximations for fast correctly rounded math libraries. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation (San Diego, CA, USA) (PLDI 2022). ACM, New York, NY, USA, 552–565.
– reference: Y. Kang, S.-H. Yoon, M.-H. Kyung, and M.-S. Kim. 2019. Fast and robust computation of the Hausdorff distance between triangle mesh and quad mesh for near-zero cases. Computers & Graphics 81 (2019), 61–72.
– reference: K. Hormann, L. Kania, and C. Yap. 2021. Novel Range Functions via Taylor Expansions and Recursive Lagrange Interpolation with Application to Real Root Isolation. In Proceedings of the 2021 International Symposium on Symbolic and Algebraic Computation (Virtual Event, Russian Federation) (ISSAC '21). ACM, New York, NY, USA, 193–200.
– reference: P. Herholz, X. Tang, T. Schneider, S. Kamil, D. Panozzo, and O. Sorkine-Hornung. 2022. Sparsity-Specific Code Optimization using Expression Trees. ACM Transactions on Graphics 41, 5 (2022), 175:1–19.
– reference: Y. Zheng, H. Sun, X. Liu, H. Bao, and J. Huang. 2022. Economic Upper Bound Estimation in Hausdorff Distance Computation for Triangle Meshes. Computer Graphics Forum 41, 1 (2022), 46–56.
– reference: L. Jaulin, I. Braems, and E. Walter. 2002. Interval methods for nonlinear identification and robust control. In Proceedings of the 41st IEEE Conference on Decision and Control, 2002., Vol. 4. IEEE, Las Vegas, NV, USA, 4676–4681.
– reference: A. Meyer and S. Pion. 2008. FPG: A code generator for fast and certified geometric predicates. In Real numbers and computers. 47–60.
– reference: Y. Li, S. Kamil, K. Crane, A. Jacobson, and Y. Gingold. 2024. I♡Mesh: A DSL for Mesh Processing. ACM Trans. Graph. 43, 6 (2024).
– reference: Etienne De Klerk, Monique Laurent, and Pablo A. Parrilo. 2006. A PTAS for the minimization of polynomials of fixed degree over the simplex. Theoretical Computer Science 361, 2–3 (Sept. 2006), 210–225. 10.1016/j.tcs.2006.05.011
– reference: J. Snyder, A.R. Woodbury, K. Fleischer, B. Currin, and A.H. Barr. 1993. Interval Methods for Multi-Point Collisions between Time-Dependent Curved Surfaces. In ACM SIGGRAPH. ACM.
– reference: V. Stahl. 1995. Interval Methods for Bounding the Range of Polynomials and Solving Systems of Nonlinear Equations. Ph.D. Dissertation.
– reference: Y. Hu, T.-M. Li, L. Anderson, J. Ragan-Kelley, and F. Durand. 2019. Taichi: a language for high-performance computation on spatially sparse data structures. ACM Transactions on Graphics 38, 6 (Nov. 2019), 1–16.
– reference: J.A. Baerentzen and H. Aanaes. 2005. Signed distance computation using the angle weighted pseudonormal. IEEE Transactions on Visualization and Computer Graphics 11, 3 (2005), 243–253.
– reference: Z. Marschner, P. Zhang, D. Palmer, and J. Solomon. 2021. Sum-of-squares geometry processing. ACM Trans. Graph. 40, 6, Article 253 (Dec. 2021), 13 pages.
– reference: M. Attene. 2025. NFG - Numbers For Geometry. https://github.com/MarcoAttene/NFG
– volume-title: CVX: Matlab Software for Disciplined Convex Programming, version 2.0. https://cvxr.com/cvx.
  year: 2012
  ident: e_1_2_1_16_1
– ident: e_1_2_1_66_1
– ident: e_1_2_1_5_1
  doi: 10.1142/S0218195908002647
– volume-title: Proceedings of the 2021 International Symposium on Symbolic and Algebraic Computation (Virtual Event, Russian Federation) (ISSAC '21)
  ident: e_1_2_1_27_1
– ident: e_1_2_1_3_1
  doi: 10.1201/b22086
– ident: e_1_2_1_51_1
– ident: e_1_2_1_56_1
  doi: 10.1145/166117.166158
– ident: e_1_2_1_37_1
  doi: 10.1145/2866569
– ident: e_1_2_1_40_1
  doi: 10.1145/3450626.3459767
– volume-title: Range Functions of Any Convergence Order and Their Amortized Complexity Analysis. In Computer Algebra in Scientific Computing: 25th International Workshop, CASC 2023 (Havana, Cuba). Springer-Verlag
  ident: e_1_2_1_28_1
– ident: e_1_2_1_53_1
  doi: 10.1145/2766947
– ident: e_1_2_1_17_1
  doi: 10.1016/j.tcs.2006.05.011
– ident: e_1_2_1_46_1
  doi: 10.1145/3478513.3480551
– ident: e_1_2_1_13_1
  doi: 10.1145/3687960
– ident: e_1_2_1_48_1
  doi: 10.7717/peerj-cs.103
– ident: e_1_2_1_26_1
  doi: 10.1145/3520484
– ident: e_1_2_1_18_1
– ident: e_1_2_1_35_1
  doi: 10.1016/j.cad.2012.10.010
– ident: e_1_2_1_4_1
– volume: 18
  start-page: 3
  year: 1997
  ident: e_1_2_1_52_1
  article-title: Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates
  publication-title: Discrete & Computational Geometry
– volume-title: ACM SIGGRAPH 2004 Course Notes
  ident: e_1_2_1_24_1
– ident: e_1_2_1_50_1
– ident: e_1_2_1_31_1
  doi: 10.1016/j.jcp.2012.08.051
– volume: 12
  start-page: 2
  year: 1983
  ident: e_1_2_1_25_1
  article-title: An interval Newton method
  publication-title: Appl. Math. Comput.
– ident: e_1_2_1_41_1
  doi: 10.1145/3662181
– ident: e_1_2_1_22_1
  doi: 10.1007/978-1-84800-155-8_7
– ident: e_1_2_1_62_1
  doi: 10.1145/3460775
– ident: e_1_2_1_33_1
  doi: 10.1109/TVCG.2006.56
– ident: e_1_2_1_64_1
– ident: e_1_2_1_2_1
– ident: e_1_2_1_67_1
  doi: 10.1111/cgf.14395
– ident: e_1_2_1_11_1
  doi: 10.1145/2185520.2185592
– ident: e_1_2_1_32_1
  doi: 10.5555/2633467.2633565
– ident: e_1_2_1_47_1
  doi: 10.1007/978-3-642-14743-2_13
– ident: e_1_2_1_39_1
  doi: 10.1016/j.cad.2015.10.004
– ident: e_1_2_1_9_1
  doi: 10.1016/j.cagd.2010.04.004
– volume-title: Sum-of-Squares Collision Detection for Curved Shapes and Paths. In ACM SIGGRAPH 2023 Conference Proceedings
  ident: e_1_2_1_65_1
– ident: e_1_2_1_21_1
  doi: 10.1016/S0377-0427(03)00422-9
– ident: e_1_2_1_61_1
  doi: 10.1111/cgf.14479
– volume: 4
  volume-title: Proceedings of the 41st IEEE Conference on Decision and Control
  year: 2002
  ident: e_1_2_1_30_1
– ident: e_1_2_1_7_1
– ident: e_1_2_1_12_1
  doi: 10.1109/TSMCB.2005.850172
– ident: e_1_2_1_23_1
  doi: 10.1109/2945.910820
– ident: e_1_2_1_59_1
  doi: 10.1145/2661229.2661237
– volume-title: FPG: A code generator for fast and certified geometric predicates. In Real numbers and computers. 47–60.
  year: 2008
  ident: e_1_2_1_49_1
– volume: 27
  start-page: 63
  year: 2020
  ident: e_1_2_1_38_1
  article-title: Reducing pessimism in Interval Analysis using B-splines Properties: Application to Robotics
  publication-title: Reliable Computing
– ident: e_1_2_1_19_1
  doi: 10.1007/s11590-016-1023-7
– ident: e_1_2_1_60_1
  doi: 10.1111/cgf.14080
– ident: e_1_2_1_63_1
  doi: 10.1145/2601097.2601114
– ident: e_1_2_1_6_1
  doi: 10.1016/j.cad.2020.102856
– volume-title: Proceedings of the ACM on Programming Languages 1, OOPSLA
  year: 2017
  ident: e_1_2_1_36_1
– ident: e_1_2_1_54_1
– ident: e_1_2_1_45_1
  doi: 10.1111/cgf.14074
– volume-title: Proceedings of the third ACM symposium on Symbolic and algebraic computation - SYMSAC '76 (SYMSAC '76)
  ident: e_1_2_1_15_1
– ident: e_1_2_1_29_1
  doi: 10.1145/3355089.3356506
– ident: e_1_2_1_34_1
  doi: 10.1016/j.cag.2019.03.014
– ident: e_1_2_1_44_1
  doi: 10.1111/cgf.14074
– volume-title: Interval Analysis For Computer Graphics. ACM SIGGRAPH
  year: 1992
  ident: e_1_2_1_55_1
– volume-title: Proc. ACM Program. Lang. 6, POPL, Article 3 (Jan.
  year: 2022
  ident: e_1_2_1_43_1
– ident: e_1_2_1_57_1
  doi: 10.1016/j.cagd.2021.101967
– ident: e_1_2_1_14_1
  doi: 10.1111/1467-8659.00236
– ident: e_1_2_1_42_1
  doi: 10.1145/3478513.3480506
– volume: 35
  year: 2016
  ident: e_1_2_1_10_1
  article-title: Why New Programming Languages for Simulation
  publication-title: ACM Trans. Graph.
– ident: e_1_2_1_58_1
– ident: e_1_2_1_1_1
  doi: 10.1145/3519939.3523447
– ident: e_1_2_1_20_1
  doi: 10.1145/3450626.3459802
– ident: e_1_2_1_8_1
  doi: 10.1109/TVCG.2005.49
SSID ssj0006446
Score 2.4733548
Snippet Many problems in computer graphics can be formulated as finding the global minimum of a function subject to a set of non-linear constraints (Minimize), or...
SourceID crossref
acm
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Animation
Compilers
Computer graphics
Computing methodologies
Context specific languages
Continuous optimization
Design and analysis of algorithms
Domain specific languages
Interval arithmetic
Mathematical analysis
Mathematical optimization
Mathematics of computing
Mesh geometry models
Nonconvex optimization
Nonlinear equations
Numerical analysis
Physical simulation
Shape modeling
Software and its engineering
Software notations and tools
Source code generation
Theory of computation
SubjectTermsDisplay Computing methodologies -- Computer graphics -- Animation -- Physical simulation
Computing methodologies -- Computer graphics -- Shape modeling -- Mesh geometry models
Mathematics of computing -- Mathematical analysis -- Nonlinear equations
Mathematics of computing -- Mathematical analysis -- Numerical analysis -- Interval arithmetic
Software and its engineering -- Software notations and tools -- Compilers -- Source code generation
Software and its engineering -- Software notations and tools -- Context specific languages -- Domain specific languages
Theory of computation -- Design and analysis of algorithms -- Mathematical optimization -- Continuous optimization -- Nonconvex optimization
Title MiSo: A DSL for Robust and Efficient Solve and MInimize Problems
URI https://dl.acm.org/doi/10.1145/3731207
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYKXOBQAQV1oSAfek27iZ045dQVLFoQy4GAVPWC_Iq6EiQrSDjsr2f8SDC0EoVLFHnjSOv58s2MPQ-Evg61YFKlw0gqSiJacgo8KGikQfmbgnVEMpMoPD3PJlf09FcaHLTb7JJGfJOLf-aVvEeqMAZyNVmyb5Bs_1IYgHuQL1xBwnD9LxlPZ0XtUsuPijMbMHhRi_beBY2PbXEIc9Rf1DcPPqLipJrdzhba5AeYPjL3oW06OpyajhFd-3B7jmDrWQcB8YWJHG1cCMCxqUMBQOrZtZ3P7cbruAqHJ63fkv49W_yp2x5hDVjr2qcL-af97kOS9rFvHUkBQ0TGrXL6xJNoyiJGXLucjmVdlUePJhpQZhzoXkfFf7M6NQUwCCNx4lrkPq-b_UKf9VGGLuc6vfYTl9BKAr4EkOHK6Gh6VvQKG0xCe6Td_RWXW22mfvdTjekibwPTJbBBLtfRR-884JFDwgb6oKtNtBaUlPyEfhpMHOARBkRgQAR2iMAgfdwjAltE2LEOEbhDxBa6Oh5fHk4i3yUj4uB7s0iCA8vho8qpUKXKiOIizhnXeclT-NIoU0xkhGqwLOMkk8M0JzIuS6FjkFCuOdlGy1Vd6c8I5ylPYlUyARqSyoQL9qNUpi4XGfKMKzFAm7AM13NXB6Vb1wHC3bL0P71Y-p3XH9lFq0_4-oKWm7tW74G914h9L69H0jNRWA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MiSo%3A+A+DSL+for+Robust+and+Efficient+Solve+and+MInimize+Problems&rft.jtitle=ACM+transactions+on+graphics&rft.au=Sichetti%2C+Federico&rft.au=Puppo%2C+Enrico&rft.au=Huang%2C+Zizhou&rft.au=Attene%2C+Marco&rft.date=2025-08-01&rft.issn=0730-0301&rft.eissn=1557-7368&rft.volume=44&rft.issue=4&rft.spage=1&rft.epage=18&rft_id=info:doi/10.1145%2F3731207&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_3731207
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-0301&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-0301&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-0301&client=summon