Enhancement of Thermoelectric Performance in Bi0.5Sb1.5Te3 Particulate Composites Including Ferroelectric BaTiO3 Nanodots

An increasing number of studies have reported producing composite structures by combining thermoelectric and functional materials. However, combining energy filtering and ferroelectric polarization to enhance the dimensionless figure of merit thermoelectric ZT remains elusive. Here we report a compo...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 14; no. 32; pp. 37204 - 37212
Main Authors Cheng, Yiming, Yang, Junyou, Luo, Yubo, Li, Wang, Vtyurin, Alexander, Jiang, Qinghui, Dunn, Steve, Yan, Haixue
Format Journal Article
LanguageEnglish
Published American Chemical Society 17.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An increasing number of studies have reported producing composite structures by combining thermoelectric and functional materials. However, combining energy filtering and ferroelectric polarization to enhance the dimensionless figure of merit thermoelectric ZT remains elusive. Here we report a composite that contains nanostructured BaTiO3 embedded in a Bi0.5Sb1.5Te3 matrix. We show that ferroelectric BaTiO3 particles are evenly composited with Bi0.5Sb1.5Te3 grains reducing the concentration of free charge carriers with increasing BaTiO3 content. Additionally, as a result of the energy-filtering effect and ferroelectric polarization, the Seebeck coefficient was improved by ∼10% with a ∼10% improvement in power factors. The BaTiO3 phase can effectively scatters phonons reducing lattice thermal conductivity κl (0.5 W m–1 K–1) and increasing ZT to 1.31 at 363 K in Bi0.5Sb1.5Te3 composites with 2 vol % BaTiO3 content giving an improvement of ∼25% over pure Bi0.5Sb1.5Te3. Our work indicates that the introduction of ferroelectric nanoparticles is an effective method for optimizing the ZT of Bi0.5Sb1.5Te3-based thermoelectric materials.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.2c10424