A Large-scale Study of Representation Learning with the Visual Task Adaptation Benchmark

Representation learning promises to unlock deep learning for the long tail of vision tasks without expensive labelled datasets. Yet, the absence of a unified evaluation for general visual representations hinders progress. Popular protocols are often too constrained (linear classification), limited i...

Full description

Saved in:
Bibliographic Details
Main Authors Zhai, Xiaohua, Puigcerver, Joan, Kolesnikov, Alexander, Ruyssen, Pierre, Riquelme, Carlos, Lucic, Mario, Djolonga, Josip, Pinto, Andre Susano, Neumann, Maxim, Dosovitskiy, Alexey, Beyer, Lucas, Bachem, Olivier, Tschannen, Michael, Michalski, Marcin, Bousquet, Olivier, Gelly, Sylvain, Houlsby, Neil
Format Journal Article
LanguageEnglish
Published 01.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Representation learning promises to unlock deep learning for the long tail of vision tasks without expensive labelled datasets. Yet, the absence of a unified evaluation for general visual representations hinders progress. Popular protocols are often too constrained (linear classification), limited in diversity (ImageNet, CIFAR, Pascal-VOC), or only weakly related to representation quality (ELBO, reconstruction error). We present the Visual Task Adaptation Benchmark (VTAB), which defines good representations as those that adapt to diverse, unseen tasks with few examples. With VTAB, we conduct a large-scale study of many popular publicly-available representation learning algorithms. We carefully control confounders such as architecture and tuning budget. We address questions like: How effective are ImageNet representations beyond standard natural datasets? How do representations trained via generative and discriminative models compare? To what extent can self-supervision replace labels? And, how close are we to general visual representations?
DOI:10.48550/arxiv.1910.04867