最小化内存冗余的自动并行策略生成方法
TP181; 受内存和计算资源限制,大规模深度学习模型通常以分布式方式训练.现有策略生成方法很少以最小化内存占用作为目标.为此,提出一种新算法,能够生成以最小化内存冗余为目标的自动并行策略.提出一种冗余内存代价模型来计算给定并行策略中每个算子的内存开销.为确保生成最优的并行策略,将并行策略搜索问题形式化为整数线性规划问题,使用高效求解器寻找具有最小内存占用的算子内并行策略.所提方法在多维并行训练框架中实现;实验结果表明,与最新Megatron-LM方法相比,可节省高达67%的内存开销,而吞吐量相差不大....
Saved in:
Published in | 信息与电子工程前沿(英文版) Vol. 26; no. 1; pp. 109 - 后插8 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | Chinese |
Published |
国防科技大学并行与分布处理国家重点实验室,中国长沙市,410000
2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2095-9184 |
DOI | 10.1631/FITEE.2300684 |
Cover
Abstract | TP181; 受内存和计算资源限制,大规模深度学习模型通常以分布式方式训练.现有策略生成方法很少以最小化内存占用作为目标.为此,提出一种新算法,能够生成以最小化内存冗余为目标的自动并行策略.提出一种冗余内存代价模型来计算给定并行策略中每个算子的内存开销.为确保生成最优的并行策略,将并行策略搜索问题形式化为整数线性规划问题,使用高效求解器寻找具有最小内存占用的算子内并行策略.所提方法在多维并行训练框架中实现;实验结果表明,与最新Megatron-LM方法相比,可节省高达67%的内存开销,而吞吐量相差不大. |
---|---|
AbstractList | TP181; 受内存和计算资源限制,大规模深度学习模型通常以分布式方式训练.现有策略生成方法很少以最小化内存占用作为目标.为此,提出一种新算法,能够生成以最小化内存冗余为目标的自动并行策略.提出一种冗余内存代价模型来计算给定并行策略中每个算子的内存开销.为确保生成最优的并行策略,将并行策略搜索问题形式化为整数线性规划问题,使用高效求解器寻找具有最小内存占用的算子内并行策略.所提方法在多维并行训练框架中实现;实验结果表明,与最新Megatron-LM方法相比,可节省高达67%的内存开销,而吞吐量相差不大. |
Abstract_FL | Large-scale deep learning models are trained distributedly due to memory and computing resource limitations.Few existing strategy generation approaches take optimal memory minimization as the objective.To fill in this gap,we propose a novel algorithm that generates optimal parallelism strategies with the constraint of minimal memory redundancy.We propose a novel redundant memory cost model to calculate the memory overhead of each operator in a given parallel strategy.To generate the optimal parallelism strategy,we formulate the parallelism strategy search problem into an integer linear programming problem and use an efficient solver to find minimal-memory intra-operator parallelism strategies.Furthermore,the proposed algorithm has been extended and implemented in a multi-dimensional parallel training framework and is characterized by high throughput and minimal memory redundancy.Experimental results demonstrate that our approach achieves memory savings of up to 67%compared to the latest Megatron-LM strategies;in contrast,the gap between the throughput of our approach and its counterparts is not large. |
Author | 梁鹏 李东升 郑浩 时彦琦 乔林波 |
AuthorAffiliation | 国防科技大学并行与分布处理国家重点实验室,中国长沙市,410000 |
AuthorAffiliation_xml | – name: 国防科技大学并行与分布处理国家重点实验室,中国长沙市,410000 |
Author_FL | Hao ZHENG Yanqi SHI Peng LIANG Linbo QIAO Dongsheng LI |
Author_FL_xml | – sequence: 1 fullname: Yanqi SHI – sequence: 2 fullname: Peng LIANG – sequence: 3 fullname: Hao ZHENG – sequence: 4 fullname: Linbo QIAO – sequence: 5 fullname: Dongsheng LI |
Author_xml | – sequence: 1 fullname: 时彦琦 – sequence: 2 fullname: 梁鹏 – sequence: 3 fullname: 郑浩 – sequence: 4 fullname: 乔林波 – sequence: 5 fullname: 李东升 |
BookMark | eNrjYmDJy89LZWAQNTTQMzQzNtR38wxxddUzMjYwMLMwYWHgNDKwNNW1NLQw4WDgLS7OTDIwMjGwNDE0NeRkMHs2p-Hphv6nPdOetrU-XTvjadv0J3tnPp_V8qJ91dOuFU93bnuxsOf52mnPpy59PmX-s44Jz6btfLZ5Kg8Da1piTnEqL5TmZtBycw1x9tAtT8xLS8xLj8_KLy3KA8rEV2WlVFQkJcenGhkYmRoYGhhYGpOkGACT3FNQ |
ClassificationCodes | TP181 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1631/FITEE.2300684 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitle_FL | Automatic parallelism strategy generation with minimal memory redundancy |
EndPage | 后插8 |
ExternalDocumentID | zjdxxbc_e202501009 |
GroupedDBID | -SI -S~ 0R~ 2B. 2KG 4.4 406 4A8 5VR 92I 93N 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAYIU AAYTO AAYZH AAZMS ABAKF ABBRH ABDBE ABDZT ABECU ABFTD ABFTV ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADKNI ADKPE ADRFC ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AESKC AETCA AEVLU AEXYK AFBBN AFDZB AFKRA AFLOW AFOHR AFQWF AFUIB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF ANMIH AOCGG ARAPS ATHPR AXYYD AYFIA BENPR BGLVJ BGNMA CAJEI CCEZO CCPQU CHBEP CUBFJ CW9 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD FA0 FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB HCIFZ IKXTQ IWAJR J-C JUIAU JZLTJ K7- KOV LLZTM M4Y M7S NPVJJ NQJWS NU0 O9J PHGZM PHGZT PMFND PSX PT4 PTHSS Q-- R-I RLLFE ROL RSV S.. SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TCJ TGT TSG U1G U5S UG4 UOJIU UTJUX UZXMN VFIZW ZMTXR |
ID | FETCH-wanfang_journals_zjdxxbc_e2025010093 |
ISSN | 2095-9184 |
IngestDate | Thu May 29 04:06:16 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Deep learning 最小化内存冗余 自动并行 Minimal memory redundancy 深度学习 Automatic parallelism |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-wanfang_journals_zjdxxbc_e2025010093 |
ParticipantIDs | wanfang_journals_zjdxxbc_e202501009 |
PublicationCentury | 2000 |
PublicationDate | 2025 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 2025 |
PublicationDecade | 2020 |
PublicationTitle | 信息与电子工程前沿(英文版) |
PublicationTitle_FL | Frontiers of Information Technology & Electronic Engineering |
PublicationYear | 2025 |
Publisher | 国防科技大学并行与分布处理国家重点实验室,中国长沙市,410000 |
Publisher_xml | – name: 国防科技大学并行与分布处理国家重点实验室,中国长沙市,410000 |
SSID | ssib024094151 ssj0001619798 ssib022561413 ssib031263382 ssib045218325 ssib051367619 |
Score | 4.830028 |
Snippet | TP181;... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 109 |
Title | 最小化内存冗余的自动并行策略生成方法 |
URI | https://d.wanfangdata.com.cn/periodical/zjdxxbc-e202501009 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFA9le9GD-InfFnQuwmoySebjONlOKII9VeitZHeziocVtIXSkwetIgU92PqBIB4EEQqCIPTgf2N2-2f43pvZ3SztoXoJb2fevK9fNm9mkpkJghtSdqXmRa-pIbk18SZpKtEVTchFBRdFO-yWuDj57qJYuJfcWU6XZxrXal8tra22b3U2Dl1X8j-oQhngiqtk_wHZsVAoABrwhSsgDNcjYcysYLqFHyvYlGUhUzkSqsW0IEIwlSJh5plWvkRLZhOWQYlmVjJtmEqYVUxJZgzxGGaIOdMsE1hlIpQJzChHUCuQmRKRMJ2jGUoxHZI9AhsCkcXMHWw56vuS3hylIX_ETE4loNp6UdnYWueR9FrAHpWRbZqpeRLOUZTNWdZC1ZYYssgbAL5AK2RWI57xfAexSPIsxTAY51AIRJ3FcDTRanRG5ZMa-AV-kSKw1tTEJsgKTqB8S2GmGBhen1hxy6_pT4D6dYYmgFCAB1xCV6WXDjA4XE2ChS4uRhwGzDiIKTqsHI9CQ11zBJhcdFVeKVRZkqMxXhhWuHICj6rACaiCewJVUAmI4iN1Zn7a_pTwIGC0HhnAgT-hVzuTfMNDOrbTndg3So5uO4Oph4DLdFGoa50mUhmSqwJvdu1W_B_IzyLG_JxDVra4BCEUXtv0lucbD7vr6-3OSomwhBEt0J3lUkZpI5g1eZYtjlIGZCPoX056pBynK6LJi-444iKOJ9s3JSkOCSYpLKUdC_2Ohg_dAEhLOkF7HA6_My-YfnvKcFrm1-8V_fu1HunSyeCEH0rOGfdcOBXMbDw4HRyvbTB6JhCDT0-rH6-rrZ1q83m1-77afPfn94fhx2f7L75Xr75Ve7_2v2wNd3eG21-Hbz8PXr4Z7OwNfm6fDW7mdqm10PSaV_zT6MnKwZjF54JG_1G_PB_MddowMCrKjipClcS8VKrHy6Qno0L2dMmTC8H1Iwi8eCSuS8ExpN005eWgsfp4rbwCHffV9lUP3l-rD6kt |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E6%9C%80%E5%B0%8F%E5%8C%96%E5%86%85%E5%AD%98%E5%86%97%E4%BD%99%E7%9A%84%E8%87%AA%E5%8A%A8%E5%B9%B6%E8%A1%8C%E7%AD%96%E7%95%A5%E7%94%9F%E6%88%90%E6%96%B9%E6%B3%95&rft.jtitle=%E4%BF%A1%E6%81%AF%E4%B8%8E%E7%94%B5%E5%AD%90%E5%B7%A5%E7%A8%8B%E5%89%8D%E6%B2%BF%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=%E6%97%B6%E5%BD%A6%E7%90%A6&rft.au=%E6%A2%81%E9%B9%8F&rft.au=%E9%83%91%E6%B5%A9&rft.au=%E4%B9%94%E6%9E%97%E6%B3%A2&rft.date=2025&rft.pub=%E5%9B%BD%E9%98%B2%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E5%B9%B6%E8%A1%8C%E4%B8%8E%E5%88%86%E5%B8%83%E5%A4%84%E7%90%86%E5%9B%BD%E5%AE%B6%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E4%B8%AD%E5%9B%BD%E9%95%BF%E6%B2%99%E5%B8%82%2C410000&rft.issn=2095-9184&rft.volume=26&rft.issue=1&rft.spage=109&rft.epage=%E5%90%8E%E6%8F%928&rft_id=info:doi/10.1631%2FFITEE.2300684&rft.externalDocID=zjdxxbc_e202501009 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzjdxxbc-e%2Fzjdxxbc-e.jpg |