基于增量式等距映射同双重局部密度方法的工业过程故障检测

TP277; 针对工业过程的非线性和动态性问题,提出一种基于流形学习下的增量式等距映射(IISOMAP)与双重局部密度(DLD)相结合的故障检测方法(IISOMAP-DLD).利用IISOMAP将原始数据映射到低维流形特征子空间和剩余子空间;然后,在两个子空间中分别引入双重局部密度方法构建统计量对过程进行监控;最后,将IISOMAP-DLD方法应用到田纳西-伊斯曼(TE)过程.实验结果表明,IISOMAP-DLD对比其他方法有更高的故障检测率.IISOMAP在保留数据内在特征的同时,解决了过程的非线性问题,而双重局部密度方法可消除过程的动态性....

Full description

Saved in:
Bibliographic Details
Published in上海交通大学学报 Vol. 58; no. 4; pp. 525 - 533
Main Authors 冯立伟, 孙立文, 顾欢, 李元
Format Journal Article
LanguageChinese
Published 沈阳化工大学理学院,沈阳 110142 2024
辽宁省化工过程工业智能化技术重点实验室,沈阳 110142%沈阳化工大学理学院,沈阳 110142
沈阳化工大学计算机科学与技术学院,沈阳 110142%沈阳化工大学计算机科学与技术学院,沈阳 110142
Subjects
Online AccessGet full text
ISSN1006-2467
DOI10.16183/j.cnki.jsjtu.2022.423

Cover

Abstract TP277; 针对工业过程的非线性和动态性问题,提出一种基于流形学习下的增量式等距映射(IISOMAP)与双重局部密度(DLD)相结合的故障检测方法(IISOMAP-DLD).利用IISOMAP将原始数据映射到低维流形特征子空间和剩余子空间;然后,在两个子空间中分别引入双重局部密度方法构建统计量对过程进行监控;最后,将IISOMAP-DLD方法应用到田纳西-伊斯曼(TE)过程.实验结果表明,IISOMAP-DLD对比其他方法有更高的故障检测率.IISOMAP在保留数据内在特征的同时,解决了过程的非线性问题,而双重局部密度方法可消除过程的动态性.
AbstractList TP277; 针对工业过程的非线性和动态性问题,提出一种基于流形学习下的增量式等距映射(IISOMAP)与双重局部密度(DLD)相结合的故障检测方法(IISOMAP-DLD).利用IISOMAP将原始数据映射到低维流形特征子空间和剩余子空间;然后,在两个子空间中分别引入双重局部密度方法构建统计量对过程进行监控;最后,将IISOMAP-DLD方法应用到田纳西-伊斯曼(TE)过程.实验结果表明,IISOMAP-DLD对比其他方法有更高的故障检测率.IISOMAP在保留数据内在特征的同时,解决了过程的非线性问题,而双重局部密度方法可消除过程的动态性.
Abstract_FL To address the nonlinearity and dynamics of industrial processes,an incremental isometric mapping(IISOMAP)in combination with double local density(DLD)is proposed as a fault detection method(IISOMAP-DLD)based on stream shape learning.First,IISOMAP is used to map the raw data into a low-dimensional manifold feature subspace and a residual subspace.Then,the double local density method is introduced in the two subspaces respectively to construct statistics to monitor the process.Finally,the IISOMAP-DLD method is applied to the Tennessee-Eastman(TE)process,and the experimental results show that IISOMAP-DLD has a higher fault detection rate than the other methods.IISOMAP preserves the intrinsic characteristics of the data and solves the nonlinear problems of the process,while the double local density method can eliminate the dynamic of the process.
Author 冯立伟
孙立文
顾欢
李元
AuthorAffiliation 沈阳化工大学理学院,沈阳 110142;沈阳化工大学计算机科学与技术学院,沈阳 110142%沈阳化工大学计算机科学与技术学院,沈阳 110142;辽宁省化工过程工业智能化技术重点实验室,沈阳 110142%沈阳化工大学理学院,沈阳 110142
AuthorAffiliation_xml – name: 沈阳化工大学理学院,沈阳 110142;沈阳化工大学计算机科学与技术学院,沈阳 110142%沈阳化工大学计算机科学与技术学院,沈阳 110142;辽宁省化工过程工业智能化技术重点实验室,沈阳 110142%沈阳化工大学理学院,沈阳 110142
Author_FL LI Yuan
GU Huan
SUN Liwen
FENG Liwei
Author_FL_xml – sequence: 1
  fullname: FENG Liwei
– sequence: 2
  fullname: SUN Liwen
– sequence: 3
  fullname: GU Huan
– sequence: 4
  fullname: LI Yuan
Author_xml – sequence: 1
  fullname: 冯立伟
– sequence: 2
  fullname: 孙立文
– sequence: 3
  fullname: 顾欢
– sequence: 4
  fullname: 李元
BookMark eNrjYmDJy89LZWCQMzTQMzQztDDWz9JLzsvO1Msqziop1TMyMDLSMzEyZmHgNDQwMNM1MjEz52DgLS7OTDIwNTQ2M7cwM-BkCHw6f9eTXX1PF8172d7_dE__87WdL7bPfTZjwdMNLU8n9Dzt73nZ3vt0Y8PL5hVP17c93bXs2bSdzzZPfT6r5en2pU92zHqxv_35iu5nU1tfzprzbHHDs63dPAysaYk5xam8UJqbQdPNNcTZQ7c8MS8tMS89Piu_tCgPKBNfnJFVklJRkQR0qYmBiYGhkTEpagGuGWmz
ClassificationCodes TP277
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16183/j.cnki.jsjtu.2022.423
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitle_FL Industrial Process Fault Detection Based on Incremental Isometric Mapping and Double Local Density Method
EndPage 533
ExternalDocumentID shjtdxxb202404012
GrantInformation_xml – fundername: (国家自然科学基金); (国家自然科学基金)
  funderid: (国家自然科学基金); (国家自然科学基金)
GroupedDBID -03
2B.
4A8
5XA
5XD
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
CW9
GROUPED_DOAJ
PSX
TCJ
TGT
U1G
U5M
UY8
ID FETCH-wanfang_journals_shjtdxxb2024040123
ISSN 1006-2467
IngestDate Thu May 29 03:56:07 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords 流形学习
local density
局部密度
isometric mapping(ISOMAP)
等距映射
fault detection
故障检测
dynamic
动态性
manifold learning
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-wanfang_journals_shjtdxxb2024040123
ParticipantIDs wanfang_journals_shjtdxxb202404012
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle 上海交通大学学报
PublicationTitle_FL Journal of Shanghai Jiaotong University
PublicationYear 2024
Publisher 沈阳化工大学理学院,沈阳 110142
辽宁省化工过程工业智能化技术重点实验室,沈阳 110142%沈阳化工大学理学院,沈阳 110142
沈阳化工大学计算机科学与技术学院,沈阳 110142%沈阳化工大学计算机科学与技术学院,沈阳 110142
Publisher_xml – name: 辽宁省化工过程工业智能化技术重点实验室,沈阳 110142%沈阳化工大学理学院,沈阳 110142
– name: 沈阳化工大学理学院,沈阳 110142
– name: 沈阳化工大学计算机科学与技术学院,沈阳 110142%沈阳化工大学计算机科学与技术学院,沈阳 110142
SSID ssib051367860
ssib023167927
ssib002258139
ssj0040338
ssib001128960
ssib057620143
Score 4.7669535
Snippet TP277;...
SourceID wanfang
SourceType Aggregation Database
StartPage 525
Title 基于增量式等距映射同双重局部密度方法的工业过程故障检测
URI https://d.wanfangdata.com.cn/periodical/shjtdxxb202404012
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1daxNB8Kj1xRexfuA3RVywSGKyd3u3-7h3uVAEBaFC38pdLrWtEMGkUPpUsFqk1fpSkeIXitIX8QupFsE_00ubf-HM7LU5TMHqyzHZnZ3Py-7scjNrWRcTwb04ikQhiRKv4NilqBCVIlVQUkWJ8jivJ5iNfO26O3zTuToqRvsOfMl9tTTdiou12T3zSv7Hq9AGfsUs2X_w7C5RaAAY_AtP8DA89-VjFgqmqszXLHTwKUNs0ZwpABSDfb6sYosfEOAxXWFSsVAy32OqwkKXKcl0iXBKTDpEEIAAARiCgKFTIZwyfhiBLTbTkngBjktdmmmXCLrMVwj4NlMCmSqdUQamWpCoEhtRjCoSR8Ekkz4NB74CWQCCCrBF28QUCEKXnw-mM1JSZ71A39hBOyRkibgI_Kk9Aiok5C7g4lgtdl46UtpFnVAinyRy0HiqmkeBwUrlUEjn7nqOrHWZ-SEJH4A7uj0uWt14CbQ0d-vsnLnw7mkr6cOZlGQIiabEEQEy6tqxVzGPnJfXUKGo8ELwoJfm5TLeoJw79i3juQ93zMUlO-uWkLn_p5NbhIRJJc_iGWEKjfQslS5M5rRW1hq3J4tTzanWdBF05UXHJID_UYa8OTHVSmZmYjQHTPx4sfdB7nllkTvGoBAcAh7l5nOrhcxVnuVYeUHx3ZBXYMlA2cWH7S83JSdNNOWUbNuks2YWyLL8Ufore8pO2XeN8ahxKxcojhyxDmc7vEFt_q4DVt_sxFFrIFtDm4OXskLvQ8esG-mrjc2Nx-mbl52F5fTn8taHh9vrL9rPXqef5tMnS-nyUmfhUfp5rnNvLf34IN143376o_11ZWt1Pl1_t_l9dfvXwtbaYnvlfmf1efvtXPvb4nFrqBqOBMOFTLaxbBppjvUY1j5h9TfuNOonrcE4smt1nmAp8XGnXq7Fjodbkpjj9Bpzecq68Hd6p_eDdMY6hLA5XDxr9bfuTtfPQbjdis-Tf38DyyOsjA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%A2%9E%E9%87%8F%E5%BC%8F%E7%AD%89%E8%B7%9D%E6%98%A0%E5%B0%84%E5%90%8C%E5%8F%8C%E9%87%8D%E5%B1%80%E9%83%A8%E5%AF%86%E5%BA%A6%E6%96%B9%E6%B3%95%E7%9A%84%E5%B7%A5%E4%B8%9A%E8%BF%87%E7%A8%8B%E6%95%85%E9%9A%9C%E6%A3%80%E6%B5%8B&rft.jtitle=%E4%B8%8A%E6%B5%B7%E4%BA%A4%E9%80%9A%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5&rft.au=%E5%86%AF%E7%AB%8B%E4%BC%9F&rft.au=%E5%AD%99%E7%AB%8B%E6%96%87&rft.au=%E9%A1%BE%E6%AC%A2&rft.au=%E6%9D%8E%E5%85%83&rft.date=2024&rft.pub=%E6%B2%88%E9%98%B3%E5%8C%96%E5%B7%A5%E5%A4%A7%E5%AD%A6%E7%90%86%E5%AD%A6%E9%99%A2%2C%E6%B2%88%E9%98%B3+110142&rft.issn=1006-2467&rft.volume=58&rft.issue=4&rft.spage=525&rft.epage=533&rft_id=info:doi/10.16183%2Fj.cnki.jsjtu.2022.423&rft.externalDocID=shjtdxxb202404012
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fshjtdxxb%2Fshjtdxxb.jpg