基于线性回归的玉米生物量预测模型及验证

S126; 玉米生物量是评估玉米长势的重要参数,为了实现玉米生物量的快速测量,该文拟以玉米株高H、茎粗长轴L、茎粗短轴S为输入,建立玉米生物量鲜质量FW和干质量DW的预测模型.采用多元回归和逐步回归方法对平展型和紧凑型玉米的小喇叭口期生物量数据进行线性回归分析.结果表明,玉米茎粗长轴和茎粗短轴与玉米鲜质量和干质量的相关性高于玉米株高,多元回归模型H+L+S、L×S和逐步回归模型具有较高的拟合精度,其对玉米鲜质量、干质量的决定系数高于0.874和0.877,均方根误差分别小于7.363和0.801 g,且单因素方差分析表明,3个模型之间没有明显差异,模型交叉验证结果表明,3个模型都具有较好的稳定...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 34; no. 10; pp. 131 - 137
Main Authors 仇瑞承, 苗艳龙, 张漫, 李寒, 孙红
Format Journal Article
LanguageChinese
Published 中国农业大学现代精细农业系统集成研究教育部重点实验室,北京,100083%中国农业大学农业部农业信息获取技术重点实验室,北京,100083 2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract S126; 玉米生物量是评估玉米长势的重要参数,为了实现玉米生物量的快速测量,该文拟以玉米株高H、茎粗长轴L、茎粗短轴S为输入,建立玉米生物量鲜质量FW和干质量DW的预测模型.采用多元回归和逐步回归方法对平展型和紧凑型玉米的小喇叭口期生物量数据进行线性回归分析.结果表明,玉米茎粗长轴和茎粗短轴与玉米鲜质量和干质量的相关性高于玉米株高,多元回归模型H+L+S、L×S和逐步回归模型具有较高的拟合精度,其对玉米鲜质量、干质量的决定系数高于0.874和0.877,均方根误差分别小于7.363和0.801 g,且单因素方差分析表明,3个模型之间没有明显差异,模型交叉验证结果表明,3个模型都具有较好的稳定性和预测能力.应用上述3个模型对玉米大喇叭口期的生物量进行预测,预测结果表明,模型对平展型玉米的预测精度优于紧凑型玉米.对平展型玉米生物量的预测中,逐步回归模型预测效果最优,其对玉米鲜质量、干质量的决定系数分别为0.866、0.875,均方根误差分别为30.790和2.752 g,相对均方根误差分别为13.53%、11.41%.该研究表明,利用玉米株高、茎粗长轴、茎粗短轴可实现对玉米生物量的估测,且对平展型玉米具有较好的预测效果.
AbstractList S126; 玉米生物量是评估玉米长势的重要参数,为了实现玉米生物量的快速测量,该文拟以玉米株高H、茎粗长轴L、茎粗短轴S为输入,建立玉米生物量鲜质量FW和干质量DW的预测模型.采用多元回归和逐步回归方法对平展型和紧凑型玉米的小喇叭口期生物量数据进行线性回归分析.结果表明,玉米茎粗长轴和茎粗短轴与玉米鲜质量和干质量的相关性高于玉米株高,多元回归模型H+L+S、L×S和逐步回归模型具有较高的拟合精度,其对玉米鲜质量、干质量的决定系数高于0.874和0.877,均方根误差分别小于7.363和0.801 g,且单因素方差分析表明,3个模型之间没有明显差异,模型交叉验证结果表明,3个模型都具有较好的稳定性和预测能力.应用上述3个模型对玉米大喇叭口期的生物量进行预测,预测结果表明,模型对平展型玉米的预测精度优于紧凑型玉米.对平展型玉米生物量的预测中,逐步回归模型预测效果最优,其对玉米鲜质量、干质量的决定系数分别为0.866、0.875,均方根误差分别为30.790和2.752 g,相对均方根误差分别为13.53%、11.41%.该研究表明,利用玉米株高、茎粗长轴、茎粗短轴可实现对玉米生物量的估测,且对平展型玉米具有较好的预测效果.
Abstract_FL Maize biomass is an essential parameter for assessing plant vigor, which is also a vital parameter for estimating root growth. Traditionally, maize biomass is obtained by manual investigation, which is time consuming and laborious, and it is tough to acquire large samples. With the development of breeding, breeders are eager to rapidly measure or estimate maize biomass. In order to meet the requirement, many biomass models have been developed. Typically plant height is used to develop models to predict plant biomass; the research introduces stem diameter parameters into the models and develops linear models based on maize height, stem long diameter, and stem short diameter to estimate maize biomass. Spreading-leaf maize named Nongda 84 and upright-leaf maize named Jingnongke 728 were cultivated, and the samples at the small trumpet stage and the large trumpet stage were collected. Plant height was taken by measuring the difference between the soil surface and the top point of leaf. Stem diameters were measured using a digital caliper, and the long diameter and short diameter were taken by measuring the longest and shortest axes of the first stem internode. Maize samples were weighted to get their fresh weights on the same day. Maize dry weight was recorded when its weight was constant. Biomass data of Nongda 84 samples and Jingnongke 728 samples at the small trumpet stage were analyzed (40 groups respectively). With the use of multiple regression method and step regression method, linear regressions were conducted, and several biomass models were built. First, plant height(H), stem long diameter(L), and stem short diameter (S) were treated individually as input parameters of linear regression models, and the regression results indicated that the relationships between maize biomass and stem long diameter, short diameter are more significant than between maize biomass and maize height, and stem diameters are of great importance to estimate maize biomass. Then, plant height, stem long diameter, and stem short diameter were combined and integrated in the multiple regression models and step regression models, and the regression precisions of multiple regression models (H+L+S, L×S)and stepwise regression model are high;for maize fresh weight and dry weight,the coefficients of determination are both higher than 0.87, and the root mean square error (RMSE) values are smaller than 7.37 and 0.81 g, respectively. Although the structures of the multiple regression models are simpler than the step regression models, the one-way analysis of variance proved that there are no significant differences among the aforementioned 3 models. In addition, leave one out cross-validation was conducted to use the biomass samples more adequately and the aforementioned 3 models were tested. The coefficients of determination and RMSE values are similar to original models, which showed that the 3 models have a good performance in stability and prediction. After that, multiple regression models H+L+S and L×S, and stepwise regression model were used to estimate maize biomass at the large trumpet stage, and 40 groups of Nongda 84 samples and 37 groups of Jingnongke 728 samples were verified to test the model precisions. In terms of Nongda 84, the multiple regression model L×S and stepwise regression model are advisable to estimate biomass. For Jingnongke 728, the multiple regression model L×S is a prime candidate for estimating biomass. The results also showed that all the models perform better in estimating Nongda 84 than Jingnongke 728. Among all the models, the stepwise regression model has the best performance in estimating the biomass of Nongda 84, and for maize fresh weight and dry weight, the coefficients of determination are 0.866 and 0.875, the RMSE values are 30.790 and 2.752 g, and the relative root mean square errors are 13.53% and 11.41%, respectively. It indicates that maize height, stem long diameter and stem short diameter can be used to estimate maize biomass, and have good performance in estimating spreading-leaf maize biomass.
Author 张漫
孙红
苗艳龙
李寒
仇瑞承
AuthorAffiliation 中国农业大学现代精细农业系统集成研究教育部重点实验室,北京,100083%中国农业大学农业部农业信息获取技术重点实验室,北京,100083
AuthorAffiliation_xml – name: 中国农业大学现代精细农业系统集成研究教育部重点实验室,北京,100083%中国农业大学农业部农业信息获取技术重点实验室,北京,100083
Author_FL Sun Hong
Zhang Man
Li Han
Qiu Ruicheng
Miao Yanlong
Author_FL_xml – sequence: 1
  fullname: Qiu Ruicheng
– sequence: 2
  fullname: Miao Yanlong
– sequence: 3
  fullname: Zhang Man
– sequence: 4
  fullname: Li Han
– sequence: 5
  fullname: Sun Hong
Author_xml – sequence: 1
  fullname: 仇瑞承
– sequence: 2
  fullname: 苗艳龙
– sequence: 3
  fullname: 张漫
– sequence: 4
  fullname: 李寒
– sequence: 5
  fullname: 孙红
BookMark eNrjYmDJy89LZWBQNTTQMzS0NDfVz9LLLC7O0zM0MDDSNbMwtNQzMjC0AHL1DAzNWBg44eIcDLzFxZlJBqaGxuYGBiaGnAyWT-fverKr7_mu_c8alj-dPe_p3knPZ7U87-t8vnHz8ynzn3eufNne_3JRy7Ot3c9WLHw6r_tpf9fLVT0v1jfyMLCmJeYUp_JCaW4GdTfXEGcP3fLEvLTEvPT4rPzSojygTHxeZXpyRRLISUCHGJoZE68SAJzwVxw
ClassificationCodes S126
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.2018.10.016
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitle_FL Modeling and verification of maize biomass based on linear regression anaysis
EndPage 137
ExternalDocumentID nygcxb201810016
GrantInformation_xml – fundername: 国家重点研发计划项目; 北京农业信息技术研究中心开放课题
  funderid: (2016YFD0300600-2016YFD0300606); (KF2018W003)
GroupedDBID -04
2B.
2B~
4A8
5XA
5XE
92G
92I
93N
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CW9
EOJEC
FIJ
IPNFZ
OBODZ
PSX
RIG
TCJ
TGD
TUS
U1G
U5N
ID FETCH-wanfang_journals_nygcxb2018100163
ISSN 1002-6819
IngestDate Wed Nov 06 04:33:56 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 10
Keywords models
biomass
生物量
株高
stem diameter
模型
linear regression
茎粗
plant height
线性回归
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-wanfang_journals_nygcxb2018100163
ParticipantIDs wanfang_journals_nygcxb201810016
PublicationCentury 2000
PublicationDate 2018
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2018
Publisher 中国农业大学现代精细农业系统集成研究教育部重点实验室,北京,100083%中国农业大学农业部农业信息获取技术重点实验室,北京,100083
Publisher_xml – name: 中国农业大学现代精细农业系统集成研究教育部重点实验室,北京,100083%中国农业大学农业部农业信息获取技术重点实验室,北京,100083
SSID ssib051370041
ssj0041925
ssib001101065
ssib023167668
Score 4.4667807
Snippet S126;...
SourceID wanfang
SourceType Aggregation Database
StartPage 131
Title 基于线性回归的玉米生物量预测模型及验证
URI https://d.wanfangdata.com.cn/periodical/nygcxb201810016
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEG7iBkQP4hPf7MHG064zs9M908fu3RmCB08Rcgszsw9PK8QNaE4KAYmRBMSTQoJefFxExEtA_Cse3B33X1hV0_sgWYwGL0NtV3XVV1VNd03T08vYDdlqu5mTBhWZZLWKnzUTmAdFWvGTIPHTsJ3KlG77vCMX7vq3l8TSXOnH1Kml1V5azdZmfldylKxCG-QVv5L9h8yOlUID0JBfeEKG4flXOeaR4CrmRvPIx2cY8ShAwsQ8kniIQQckY7iKkDANrjyUUSDsIwFdQkW9XG5qxPJRJ7IU18BSPAQ6RkJ71EtyI3hokNAh1y6ZiKhFoGSoSRhM1HkEAtDiThfBJCa5qhPsEMEgtoBrgXZBZ6FKN7iW5IgG1mhoUCeDoBCsS55JBGviiQipUAERihyDZ8SVmoiAxTrXDrkDhJlwAFqDYikQe_EneqOdETuN4yi26AFlEWLTmO2Y9m0arD8UdONYPzQF3XgIDwmDGmboCdAL4BYyivKhCmHwHmQcip2D-UMC_CWWAmyK4uChFUxnDUNs89ogPMBShDCicI6TRy2A3yMaWjCkNNR0HRpdqq25J44aioMyY3gHWT4Oaxxt4K-LmUGnIhw3xbBTo7ESUlKhr47_o5tTyzeu7zK0i7Bd3-1muZ3HnKnV2rUFSMv-CmbXFCoQVFSgierYBB4LDat4MtTdd5c7VYfdR53sYYoyeMuZPMbmPVgKRYnNa9Mw8eSVxcVdmfGa6uHNFHKyBSAAFd6JN6ou8dCGoBMcFsZxxkcgb_0JIn2U2G0n3c5U_bx4mp2yL75lXcxiZ9jc2r2z7KTurNjLf1rnmOrv7v3c28r3vg8ev-u_3ul_e5G_Ws-3NvLPX_KXu_nGh-HT7eHb9cHXzcH7N_2dzf72s-HH578-PTnPbsbRYn2hYo0v2-nzwfK-ANUusFL3frd1kZUDp5mkWaqypi_9LAiTwG06mWi2m1Ik7UReYuXDtF0-XOQKO4F0sZ16lZV6K6uta_CC0Uuv2xz9BnlEz2E
link.rule.ids 315,783,787,4031,27935,27936,27937
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E7%BA%BF%E6%80%A7%E5%9B%9E%E5%BD%92%E7%9A%84%E7%8E%89%E7%B1%B3%E7%94%9F%E7%89%A9%E9%87%8F%E9%A2%84%E6%B5%8B%E6%A8%A1%E5%9E%8B%E5%8F%8A%E9%AA%8C%E8%AF%81&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E4%BB%87%E7%91%9E%E6%89%BF&rft.au=%E8%8B%97%E8%89%B3%E9%BE%99&rft.au=%E5%BC%A0%E6%BC%AB&rft.au=%E6%9D%8E%E5%AF%92&rft.date=2018&rft.pub=%E4%B8%AD%E5%9B%BD%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6%E7%8E%B0%E4%BB%A3%E7%B2%BE%E7%BB%86%E5%86%9C%E4%B8%9A%E7%B3%BB%E7%BB%9F%E9%9B%86%E6%88%90%E7%A0%94%E7%A9%B6%E6%95%99%E8%82%B2%E9%83%A8%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E5%8C%97%E4%BA%AC%2C100083%25%E4%B8%AD%E5%9B%BD%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6%E5%86%9C%E4%B8%9A%E9%83%A8%E5%86%9C%E4%B8%9A%E4%BF%A1%E6%81%AF%E8%8E%B7%E5%8F%96%E6%8A%80%E6%9C%AF%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E5%8C%97%E4%BA%AC%2C100083&rft.issn=1002-6819&rft.volume=34&rft.issue=10&rft.spage=131&rft.epage=137&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2018.10.016&rft.externalDocID=nygcxb201810016
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg