基于数码相机图像的甜菜冠层氮素营养监测

S126%TP391; 为探究数码相机监测甜菜冠层叶片氮素的可行性,2014年于内蒙古赤峰市松山区太平地镇采用不同种植方案设计了田间试验.利用数码相机获取甜菜冠层数字图像,基于灰度值的阈值分割方法提取冠层图像的红光值(R)、绿光值(G)和蓝光值(B),交互调优R、G、B单色分量权重,提出三原色权值调优方法,并挖掘出适宜于表征甜菜冠层LNC(leaf nitrogen content)的基础调优参数BOP(basic optimal parameter)和归一化调优参数NOP(normalized optimal parameter).结果表明:采用常规方法选取的敏感颜色参数G/R、NRI(R/...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 34; no. 1; pp. 157 - 163
Main Authors 张珏, 田海清, 李哲, 李斐, 史树德
Format Journal Article
LanguageChinese
Published 内蒙古师范大学物理与电子信息学院,呼和浩特 010020%内蒙古农业大学机电工程学院,呼和浩特,010018%内蒙古农业大学草原与资源环境学院,呼和浩特,010019%内蒙古农业大学农学院,呼和浩特,010019 2018
内蒙古农业大学机电工程学院,呼和浩特 010018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract S126%TP391; 为探究数码相机监测甜菜冠层叶片氮素的可行性,2014年于内蒙古赤峰市松山区太平地镇采用不同种植方案设计了田间试验.利用数码相机获取甜菜冠层数字图像,基于灰度值的阈值分割方法提取冠层图像的红光值(R)、绿光值(G)和蓝光值(B),交互调优R、G、B单色分量权重,提出三原色权值调优方法,并挖掘出适宜于表征甜菜冠层LNC(leaf nitrogen content)的基础调优参数BOP(basic optimal parameter)和归一化调优参数NOP(normalized optimal parameter).结果表明:采用常规方法选取的敏感颜色参数G/R、NRI(R/(R+G+B))与冠层LNC的相关系数分别为0.80和0.79,三原色权值调优方法确定的调优参数BOP、NOP与冠层LNC的相关系数分别为0.83和0.84,算法优化后提高了颜色参数与冠层LNC的相关性.对比常规参数和调优参数对冠层LNC的预测精度,结果显示调优参数BOP、NOP建立模型的预测精度均高于常规参数G/R、NRI,BOP预测模型的决定系数R2和均方根误差RMSE(root mean square error)分别为0.69和2.65,NOP预测模型的R2和RMSE分别为0.68和2.73.该研究表明,在大田自然光照条件下,借助数码相机实时、准确监测甜菜氮素营养丰缺水平具有较高的可行性,数字图像处理技术在作物营养无损诊断中存在很大的应用潜力.
AbstractList S126%TP391; 为探究数码相机监测甜菜冠层叶片氮素的可行性,2014年于内蒙古赤峰市松山区太平地镇采用不同种植方案设计了田间试验.利用数码相机获取甜菜冠层数字图像,基于灰度值的阈值分割方法提取冠层图像的红光值(R)、绿光值(G)和蓝光值(B),交互调优R、G、B单色分量权重,提出三原色权值调优方法,并挖掘出适宜于表征甜菜冠层LNC(leaf nitrogen content)的基础调优参数BOP(basic optimal parameter)和归一化调优参数NOP(normalized optimal parameter).结果表明:采用常规方法选取的敏感颜色参数G/R、NRI(R/(R+G+B))与冠层LNC的相关系数分别为0.80和0.79,三原色权值调优方法确定的调优参数BOP、NOP与冠层LNC的相关系数分别为0.83和0.84,算法优化后提高了颜色参数与冠层LNC的相关性.对比常规参数和调优参数对冠层LNC的预测精度,结果显示调优参数BOP、NOP建立模型的预测精度均高于常规参数G/R、NRI,BOP预测模型的决定系数R2和均方根误差RMSE(root mean square error)分别为0.69和2.65,NOP预测模型的R2和RMSE分别为0.68和2.73.该研究表明,在大田自然光照条件下,借助数码相机实时、准确监测甜菜氮素营养丰缺水平具有较高的可行性,数字图像处理技术在作物营养无损诊断中存在很大的应用潜力.
Abstract_FL To explore the feasibility of monitoring nitrogen elements in beet canopy leaves by digital camera, field experiment with different planting schemes was carried out in Chifeng City, Inner Mongolia in 2014. Canopy digital images of beet grown under different nitrogen application rates were captured several times during the whole growth stage. The change trend of canopy LNC (leaf nitrogen content) under different nitrogen levels was analyzed. It was found that canopy LNC is relatively high in the middle period of rapid growth and later stage of sugar growth, and the canopy grow trend is from high to low during the whole stage. Canon EOS7D digital camera with the resolution of 5184×3456 was used for image acquisition. In order to keep the light source consistent and improve the comparability of the images captured in different stages, collection time was set at noon from 12:00 to 14:00, when the weather was clear and calm. The camera was 1.50 m above the beet canopy and had an included angle of 60° with the ground. Complete beet canopies of adjacent 2×2 plants were selected and the image was stored in JPEG format. In view of the difference of gray value between leaves and background, threshold segmentation method based on gray value was used to segment the soil, shading leaves, and numbered signs. After that, the color image with green leaves only was obtained, and theR(redness intensity),G(greenness intensity), andB(blueness intensity) values were extracted. Ten image feature parameters were chosen to analyze their correlation with monitoring evaluation index of canopy nutrition under different schemes, including 3 single color characteristic values (R,G andB), 4 linear combination parameters (G/R,G+B,R/B andR-B), and 3 linear combination parameters by standardized processing (R/R+G+B,G/R+G+B andB/R+G+B). It was found that different characterization ability exists among 3 single color parameters, and the correlation between the composite characteristic parameters and the canopy LNC has significant improvement compared with that between the single color parameter and the canopy LNC. Interactive tuningR,Gand B tricolor component coefficients, and the method of primary color weight optimization was proposed. The BOP (basic optimal parameter) and NOP (normalized optimal parameter) were extracted to characterize nitrogen elements in beet canopy leaves. The results show that the 2 tuning parameters have great effect on correlation and fitting accuracy compared with color characteristic parametersG/R and NRI (normalized redness intensity) obtained by conventional methods. The correlation coefficients between G/R, NRI and canopy LNC were 0.80 and 0.79, respectively, and those between BOP, NOP and canopy LNC were 0.84 and 0.83, respectively. Comparing prediction accuracy, theR2 values of the model based on the tuning parameters BOP and NOP were 0.69 and 0.68, respectively, which were higher than the contrast indicesG/R and NRI. The RMSE (root mean square error) values of the model based on the tuning parameters were 2.65 and 2.73, respectively, which were lower than the contrast indices. It can be seen that the method of primary color weight optimization is more efficient than the conventional color characteristic parameter selection method. The sensitive parameters affect the accuracy of crop nutrition monitoring, however, most studies choose sensitive parameters from the common, and researches are few in the constructing parameters method. This paper analyzedR,G andB primary weights, and proposed a general method for constructing color sensitive parameters. The optimization parameters BOP, NOP and coefficient optimization model were constructed, and the parameters weight range was analyzed and regulated, and then BOP and NOP were optimized. This study can provide a basis for the nutritional diagnosis of other crops, and also show it is possible to estimate the nutrition deficiency using digital camera under the conditions of field natural light. This indicates that conventional low-cost digital cameras can be used for determining nitrogen content in beet canopy leaves, and also offers a potentially inexpensive, fast, accurate and suitable tool for small farms.
Author 史树德
张珏
李哲
田海清
李斐
AuthorAffiliation 内蒙古农业大学机电工程学院,呼和浩特 010018;内蒙古师范大学物理与电子信息学院,呼和浩特 010020%内蒙古农业大学机电工程学院,呼和浩特,010018%内蒙古农业大学草原与资源环境学院,呼和浩特,010019%内蒙古农业大学农学院,呼和浩特,010019
AuthorAffiliation_xml – name: 内蒙古农业大学机电工程学院,呼和浩特 010018;内蒙古师范大学物理与电子信息学院,呼和浩特 010020%内蒙古农业大学机电工程学院,呼和浩特,010018%内蒙古农业大学草原与资源环境学院,呼和浩特,010019%内蒙古农业大学农学院,呼和浩特,010019
Author_FL Li Fei
Zhang Jue
Li Zhe
Shi Shude
Tian Haiqing
Author_FL_xml – sequence: 1
  fullname: Zhang Jue
– sequence: 2
  fullname: Tian Haiqing
– sequence: 3
  fullname: Li Zhe
– sequence: 4
  fullname: Li Fei
– sequence: 5
  fullname: Shi Shude
Author_xml – sequence: 1
  fullname: 张珏
– sequence: 2
  fullname: 田海清
– sequence: 3
  fullname: 李哲
– sequence: 4
  fullname: 李斐
– sequence: 5
  fullname: 史树德
BookMark eNrjYmDJy89LZWBQNTTQMzS0NDfVz9LLLC7O0zM0MDDSNbMwtNQzMjC00DMw1DMwMmRh4ISLczDwFhdnJhmYGhqbGxiYGHIyWD6dv-vJrr5nUzc8X9D4fPaOZ3N2PZ2972lz__NZLc-nzHnRP-dp24KnG5uebVj3fMuCFxOWPm3d_Xz2xGdbu3kYWNMSc4pTeaE0N4O6m2uIs4dueWJeWmJeenxWfmlRHlAmPq8yPbkiCeQkA0Ogg4yJVwkAsf9XVA
ClassificationCodes S126%TP391
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.2018.01.021
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitle_FL Nitrogen nutrition monitoring of beet canopy based on digital camera image
EndPage 163
ExternalDocumentID nygcxb201801021
GrantInformation_xml – fundername: 国家自然科学基金项目; 内蒙古自然科学基金项目; 国家现代农业产业技术体系专项基金项目
  funderid: (41261084); (2016MS0346); (CARS-210402)
GroupedDBID -04
2B.
2B~
4A8
5XA
5XE
92G
92I
93N
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CW9
EOJEC
FIJ
IPNFZ
OBODZ
PSX
RIG
TCJ
TGD
TUS
U1G
U5N
ID FETCH-wanfang_journals_nygcxb2018010213
ISSN 1002-6819
IngestDate Wed Nov 06 04:33:56 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords image processing
nitrogen
模型

甜菜
颜色特征参数
digital camera
氮素营养监测
图像处理
model
beet
color characteristic parameter
nitrogen nutrition monitoring
数码相机
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-wanfang_journals_nygcxb2018010213
ParticipantIDs wanfang_journals_nygcxb201801021
PublicationCentury 2000
PublicationDate 2018
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2018
Publisher 内蒙古师范大学物理与电子信息学院,呼和浩特 010020%内蒙古农业大学机电工程学院,呼和浩特,010018%内蒙古农业大学草原与资源环境学院,呼和浩特,010019%内蒙古农业大学农学院,呼和浩特,010019
内蒙古农业大学机电工程学院,呼和浩特 010018
Publisher_xml – name: 内蒙古师范大学物理与电子信息学院,呼和浩特 010020%内蒙古农业大学机电工程学院,呼和浩特,010018%内蒙古农业大学草原与资源环境学院,呼和浩特,010019%内蒙古农业大学农学院,呼和浩特,010019
– name: 内蒙古农业大学机电工程学院,呼和浩特 010018
SSID ssib051370041
ssj0041925
ssib001101065
ssib023167668
Score 4.4666295
Snippet S126%TP391;...
SourceID wanfang
SourceType Aggregation Database
StartPage 157
Title 基于数码相机图像的甜菜冠层氮素营养监测
URI https://d.wanfangdata.com.cn/periodical/nygcxb201801021
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxNBFB9qAqIH8RO_6cHBg6Tu1-zOHGeSXYoHTxV6K9lkjacItQXtzc-LYBX0YiLm4lUqKEgF_xqT9M_wvbeTzdJWa20hDI83L-_93nu7s2-G2VnGrkWOmzl-6tZg9uHUAj90amkKN17bT8NmBg8I0abdFrfD-TvBrUWxOFP9UNq1tLqSzrXWdn2v5H-yCjzIK74lu4_MFkqBATTkF1rIMLT_lGMeC64SbjSPA2xlzOOQK8GNw-OIawfqRCSU4UZSV52EBXFiJKTPZUIy8PeAiADFYol8JEAmRFVAGJdLD_WAfh2jsAmoS3IFHEHCIGasUeWSMDBNuQi2OlF5gMAUQTIRaYAWTBvk6AbXIWqQGromlwbJ1slshBhlMu0h9Og8WQWNSIC60p_BboMCBUHwufF26QECfk55QcSO3njxWvTgJ7rtcaWIk3AdEDQwJyl8dQwuugExikr-AGrFtSK0DqrKoyDjCX5hhaEXu0AzxRFyqZOSHoWmtQc3CTnjYlSQ8NB0HoHcCpgz6oaDx-A63BN7OLAzM9sdKK6jEtw_Zm9_KDl9Bh7CfRg4AUkD1aJwjDfKNNCSrsqAAGgKdIR8G19vkrmDuKAOw4VC5qBgSsUHViehtCxbndil_vIonJcabn6wu61a3bxM2FkQqUhQRYQW5goLuKdV5ucVu9NKsNif233UaT1MUQaPnHSPsKoHz3FRYVVtGiaZzrdcXFIqCgIPj9UIp-sXwvXx6xnFnjvccSJo-4mFcZTxCcibf4NIb1R27za7nVLxv3CSnbCz9lmdD8Gn2MzavdPsuO4s25OLsjNMDT9u_tp8NXq3MR48Hve-j_qbw97P4dP18ftn47f9rfX-8MVg-OXJaOPz-Otg6_Wn4fMf496b0beXZ9n1JF6oz9es8SU79j9Y2hYg_xyrdO93s_NsVjbbQSDDlnRDFUg_TNuZ11ItX0aimbYycYHN7qXt4t4il9gxpPO14MussrK8ml2B2dFKetXm6DfE0_Gi
link.rule.ids 315,783,787,4031,27935,27936,27937
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%95%B0%E7%A0%81%E7%9B%B8%E6%9C%BA%E5%9B%BE%E5%83%8F%E7%9A%84%E7%94%9C%E8%8F%9C%E5%86%A0%E5%B1%82%E6%B0%AE%E7%B4%A0%E8%90%A5%E5%85%BB%E7%9B%91%E6%B5%8B&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E5%BC%A0%E7%8F%8F&rft.au=%E7%94%B0%E6%B5%B7%E6%B8%85&rft.au=%E6%9D%8E%E5%93%B2&rft.au=%E6%9D%8E%E6%96%90&rft.date=2018&rft.pub=%E5%86%85%E8%92%99%E5%8F%A4%E5%B8%88%E8%8C%83%E5%A4%A7%E5%AD%A6%E7%89%A9%E7%90%86%E4%B8%8E%E7%94%B5%E5%AD%90%E4%BF%A1%E6%81%AF%E5%AD%A6%E9%99%A2%2C%E5%91%BC%E5%92%8C%E6%B5%A9%E7%89%B9+010020%25%E5%86%85%E8%92%99%E5%8F%A4%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6%E6%9C%BA%E7%94%B5%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%91%BC%E5%92%8C%E6%B5%A9%E7%89%B9%2C010018%25%E5%86%85%E8%92%99%E5%8F%A4%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6%E8%8D%89%E5%8E%9F%E4%B8%8E%E8%B5%84%E6%BA%90%E7%8E%AF%E5%A2%83%E5%AD%A6%E9%99%A2%2C%E5%91%BC%E5%92%8C%E6%B5%A9%E7%89%B9%2C010019%25%E5%86%85%E8%92%99%E5%8F%A4%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6%E5%86%9C%E5%AD%A6%E9%99%A2%2C%E5%91%BC%E5%92%8C%E6%B5%A9%E7%89%B9%2C010019&rft.issn=1002-6819&rft.volume=34&rft.issue=1&rft.spage=157&rft.epage=163&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2018.01.021&rft.externalDocID=nygcxb201801021
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg