融合多策略改进的自适应蚁群算法
TP181; 针对蚁群算法(ant colony algorithm,ACO)收敛速度慢和易陷入局部最优等问题,提出一种融合多策略改进的自适应蚁群算法(improved ant colony algorithm,IACO).首先,通过透镜成像反向学习的拉丁超立方策略进行种群初始化,增加种群多样性的同时也提升初始解的质量;其次,通过动态信息素更新规则和自适应调整机制对信息素进行更新,进一步提高全局搜索能力;再次,采用t分布对信息素浓度进行变异扰动,可以增强其跳出局部最优能力;最后,将IACO与标准ACO及其他经典群智能优化算法在多个标准测试函数上作仿真对比,在Rastrigin、Sphere和...
Saved in:
Published in | 南通大学学报(自然科学版) Vol. 23; no. 4; pp. 36 - 44 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | Chinese |
Published |
沈阳工业大学 理学院,辽宁 沈阳 110870
2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1673-2340 |
DOI | 10.12194/j.ntu.20240508001 |
Cover
Abstract | TP181; 针对蚁群算法(ant colony algorithm,ACO)收敛速度慢和易陷入局部最优等问题,提出一种融合多策略改进的自适应蚁群算法(improved ant colony algorithm,IACO).首先,通过透镜成像反向学习的拉丁超立方策略进行种群初始化,增加种群多样性的同时也提升初始解的质量;其次,通过动态信息素更新规则和自适应调整机制对信息素进行更新,进一步提高全局搜索能力;再次,采用t分布对信息素浓度进行变异扰动,可以增强其跳出局部最优能力;最后,将IACO与标准ACO及其他经典群智能优化算法在多个标准测试函数上作仿真对比,在Rastrigin、Sphere和 Ackley 3 个测试函数上分别与标准 ACO、GA(genetic algorithm)和 PSO(particle swarm optimization)进行对比,同时,在Rastrigin上分别控制蚂蚁数量和启发式信息权重与标准ACO进行对比,实验结果表明IACO具有更好的收敛性能和稳定性能. |
---|---|
AbstractList | TP181; 针对蚁群算法(ant colony algorithm,ACO)收敛速度慢和易陷入局部最优等问题,提出一种融合多策略改进的自适应蚁群算法(improved ant colony algorithm,IACO).首先,通过透镜成像反向学习的拉丁超立方策略进行种群初始化,增加种群多样性的同时也提升初始解的质量;其次,通过动态信息素更新规则和自适应调整机制对信息素进行更新,进一步提高全局搜索能力;再次,采用t分布对信息素浓度进行变异扰动,可以增强其跳出局部最优能力;最后,将IACO与标准ACO及其他经典群智能优化算法在多个标准测试函数上作仿真对比,在Rastrigin、Sphere和 Ackley 3 个测试函数上分别与标准 ACO、GA(genetic algorithm)和 PSO(particle swarm optimization)进行对比,同时,在Rastrigin上分别控制蚂蚁数量和启发式信息权重与标准ACO进行对比,实验结果表明IACO具有更好的收敛性能和稳定性能. |
Abstract_FL | To address the problems of slow convergence and local optima entrapment in the ant colony algorithm(ACO),this paper proposes an improved ant colony algorithm(IACO)integrating multiple strategies.First,a Latin hy-percube strategy based on lens imaging inverse learning is employed for population initialization,which enhances popu-lation diversity while improving the quality of initial solutions.Second,dynamic pheromone update rules and adaptive adjustment mechanisms are implemented for pheromone updates,further enhancing global search capability.Third,distribution-based mutation perturbation of pheromone concentration is adopted to strengthen the ability to escape lo-cal optima.Finally,comparative simulation experiments are conducted between IACO and the standard ACO as well as other classic swarm intelligence optimization algorithms on multiple standard test functions.Specifically,compa-risons are made with standard ACO,GA(genetic algorithm),and PSO(particle swarm optimization)on three test functions:Rastrigin,Sphere,and Ackley.Additionally,on the Rastrigin function,comparisons are made with the stan-dard ACO by controlling ant population size and heuristic information weight.The experimental results demonstrate that IACO exhibits superior convergence performance and stability. |
Author | 刘禹彤 李媛 郑新宇 |
AuthorAffiliation | 沈阳工业大学 理学院,辽宁 沈阳 110870 |
AuthorAffiliation_xml | – name: 沈阳工业大学 理学院,辽宁 沈阳 110870 |
Author_FL | ZHENG Xinyu LI Yuan LIU Yutong |
Author_FL_xml | – sequence: 1 fullname: LIU Yutong – sequence: 2 fullname: LI Yuan – sequence: 3 fullname: ZHENG Xinyu |
Author_xml | – sequence: 1 fullname: 刘禹彤 – sequence: 2 fullname: 李媛 – sequence: 3 fullname: 郑新宇 |
BookMark | eNrjYmDJy89LZWCQMjTQMzQytDTRz9LLKynVMzIwMjEwNbAwMDBkYeA0NDM31jUyNjHgYOAtLs5MAooaGlkaGVhyMui-mNf7dELH0yWznq-d9nzq0mdTdr7YP_v5rJYX7ateNjQ93TXlxazG5_uWPF83_dnmqTwMrGmJOcWpvFCam0HDzTXE2UO3PDEvLTEvPT4rv7QoDygTn1eSXlFZkQR2h4mBgYkxCUoBWsNNPw |
ClassificationCodes | TP181 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.12194/j.ntu.20240508001 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitle_FL | Improved adaptive ant colony algorithm by incorporating multiple strategies |
EndPage | 44 |
ExternalDocumentID | ntgxyxb202404004 |
GrantInformation_xml | – fundername: 辽宁省兴辽英才计划项目 funderid: (XLYC2008005) |
GroupedDBID | 2B. 4A8 92I 93N ALMA_UNASSIGNED_HOLDINGS GROUPED_DOAJ PSX TCJ |
ID | FETCH-wanfang_journals_ntgxyxb2024040043 |
ISSN | 1673-2340 |
IngestDate | Thu May 29 03:54:36 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Keywords | 反向学习 蚁群算法 Latin hypercube sampling ant colony algorithm 自适应蚁群算法 adaptive ant colony algorithm t-distri-bution reverse learning 拉丁超立方抽样 t分布 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-wanfang_journals_ntgxyxb2024040043 |
ParticipantIDs | wanfang_journals_ntgxyxb202404004 |
PublicationCentury | 2000 |
PublicationDate | 2024 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024 |
PublicationDecade | 2020 |
PublicationTitle | 南通大学学报(自然科学版) |
PublicationTitle_FL | Journal of Nantong University(Natural Science Edition) |
PublicationYear | 2024 |
Publisher | 沈阳工业大学 理学院,辽宁 沈阳 110870 |
Publisher_xml | – name: 沈阳工业大学 理学院,辽宁 沈阳 110870 |
SSID | ssib001129209 ssib006703813 ssj0002912245 ssib006563819 ssib036435926 ssib013937516 ssib051370593 ssib002039883 ssib000969275 |
Score | 4.67933 |
Snippet | TP181; 针对蚁群算法(ant colony algorithm,ACO)收敛速度慢和易陷入局部最优等问题,提出一种融合多策略改进的自适应蚁群算法(improved ant colony... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 36 |
Title | 融合多策略改进的自适应蚁群算法 |
URI | https://d.wanfangdata.com.cn/periodical/ntgxyxb202404004 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxNBdKj14kUUFb-p4AMhbN2PmZ2Z426zoQh6qtBbyaabeoqgKdSeVAS9CB5ahQie6kXQiyc96K9JE_-F773d7A6mYPWyTGbe98vw3szOmxXipuwZ1bVd60UyNx7OROPlmwEddvBl0TNFt-AKubv34tX78s66Wl840XdOLW0P8-Xe7pF1Jf_jVexDv1KV7D94tiaKHdhG_-ITPYzPY_kYMgM2A9OGTIH1wRhqJBJsApmGpA02pobFTgVZDFZCagkr7YBNeSgBI6nHIDxiWTr6YEKikyYETywQJiDgNCPiRDkDq4lgGkH59cpZgkuIKA-NMimShEVKNDfakMROIwaTsGwdSFdY_loSTYKlLD_i2sDBwiHLwCVWvZfBzFFew0gx64p6IJJsQNAKbTAZk0MN02YEaUbMKCa7pT6DoHm1uzUSNpuibICQBbHEFI1B7DQrhLKbI7VvsdnRyK4dEN9CEuIfnr2TkdAV96A1z6dFZRXlp1CqiBLryAuj8k6qWcgpS6yrqSWd-BHFTiZSXow5F-MwxkgOcpiULJPavqK0P2gien3OcjDc2nmykzOQ5GtzT4ZaB8rZeqiWsdZ9e005eOhc6xb6kTVOGoprAFroN781vW-uxwO6ZFE1y44Is15lmzRfBZH2Z9fsUcYUWnq_S6eNa2tV9W2k6-05TbnAbtDvDracXHDtjDhdLeKWknJGnhULuw_OCW_64fX4zavxwWjy-e1k_-Ph3rfpz_eT0Yvpy0-_nj4ff9-bjp5NfhxMvrw7_Lp_XtzqZGsrq17FYqOa8I83_rRmdEEsDh4OiotiSReb_ULRFwIUCt_zLdoIF1ZBP1dh3rXykrjxV3KXjwFzRZyidrkHeFUsDh9tF9cwKx7m19mlvwFDJoEF |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%9E%8D%E5%90%88%E5%A4%9A%E7%AD%96%E7%95%A5%E6%94%B9%E8%BF%9B%E7%9A%84%E8%87%AA%E9%80%82%E5%BA%94%E8%9A%81%E7%BE%A4%E7%AE%97%E6%B3%95&rft.jtitle=%E5%8D%97%E9%80%9A%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E7%89%88%EF%BC%89&rft.au=%E5%88%98%E7%A6%B9%E5%BD%A4&rft.au=%E6%9D%8E%E5%AA%9B&rft.au=%E9%83%91%E6%96%B0%E5%AE%87&rft.date=2024&rft.pub=%E6%B2%88%E9%98%B3%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6+%E7%90%86%E5%AD%A6%E9%99%A2%2C%E8%BE%BD%E5%AE%81+%E6%B2%88%E9%98%B3+110870&rft.issn=1673-2340&rft.volume=23&rft.issue=4&rft.spage=36&rft.epage=44&rft_id=info:doi/10.12194%2Fj.ntu.20240508001&rft.externalDocID=ntgxyxb202404004 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fntgxyxb%2Fntgxyxb.jpg |