基于注意力机制的铁路入侵目标识别方法

TN925; 异物入侵检测对于保障铁路运营安全十分重要,针对传统铁路综合视频监控效率低、检测精度差以及现有智能检测算法检测速度慢等问题,结合注意力机制和目标检测模型在边端进行入侵目标检测.在提高检测精度方面,将包括空间注意力模块和通道注意力模块的卷积注意力模块(Convolutional block attention module,CBAM)模块融合到YOLOv5模型当中,构建了CBAM-YOLOv5模型,并采用距离交并比非极大值抑制(Dis-tance intersection-over-union_non-maximum suppression,DIoU_NMS)算法代替加权非极大值抑制...

Full description

Saved in:
Bibliographic Details
Published in南京航空航天大学学报(英文版) Vol. 41; no. 4; pp. 541 - 554
Main Authors 石江, 白丁元, 郭保青, 王尧, 阮涛
Format Journal Article
LanguageChinese
Published 国能朔黄铁路发展有限责任公司,北京 100080,中国%北京交通大学机械与电子控制工程学院,北京 100044,中国 2024
Subjects
Online AccessGet full text
ISSN1005-1120
DOI10.16356/j.1005?1120.2024.04.010

Cover

Abstract TN925; 异物入侵检测对于保障铁路运营安全十分重要,针对传统铁路综合视频监控效率低、检测精度差以及现有智能检测算法检测速度慢等问题,结合注意力机制和目标检测模型在边端进行入侵目标检测.在提高检测精度方面,将包括空间注意力模块和通道注意力模块的卷积注意力模块(Convolutional block attention module,CBAM)模块融合到YOLOv5模型当中,构建了CBAM-YOLOv5模型,并采用距离交并比非极大值抑制(Dis-tance intersection-over-union_non-maximum suppression,DIoU_NMS)算法代替加权非极大值抑制算法,从而改善模型对入侵目标的检测效果;在提升检测速度方面,基于批量归一化(Bath normalization,BN)层对模型网络裁剪并对TensorRT推理加速,最终将算法移植到边缘设备.CBAM-YOLOv5模型在自建的铁路数据集上的检测精度提升了2.1%,平均精度均值(mean Average precision,mAP)达到了95.0%,在边缘设备上的推理速度达到了15帧/s.
AbstractList TN925; 异物入侵检测对于保障铁路运营安全十分重要,针对传统铁路综合视频监控效率低、检测精度差以及现有智能检测算法检测速度慢等问题,结合注意力机制和目标检测模型在边端进行入侵目标检测.在提高检测精度方面,将包括空间注意力模块和通道注意力模块的卷积注意力模块(Convolutional block attention module,CBAM)模块融合到YOLOv5模型当中,构建了CBAM-YOLOv5模型,并采用距离交并比非极大值抑制(Dis-tance intersection-over-union_non-maximum suppression,DIoU_NMS)算法代替加权非极大值抑制算法,从而改善模型对入侵目标的检测效果;在提升检测速度方面,基于批量归一化(Bath normalization,BN)层对模型网络裁剪并对TensorRT推理加速,最终将算法移植到边缘设备.CBAM-YOLOv5模型在自建的铁路数据集上的检测精度提升了2.1%,平均精度均值(mean Average precision,mAP)达到了95.0%,在边缘设备上的推理速度达到了15帧/s.
Abstract_FL The detection of foreign object intrusion is crucial for ensuring the safety of railway operations.To address challenges such as low efficiency,suboptimal detection accuracy,and slow detection speed inherent in conventional comprehensive video monitoring systems for railways,a railway foreign object intrusion recognition and detection system is conceived and implemented using edge computing and deep learning technologies.In a bid to raise detection accuracy,the convolutional block attention module(CBAM),including spatial and channel attention modules,is seamlessly integrated into the YOLOv5 model,giving rise to the CBAM-YOLOv5 model.Furthermore,the distance intersection-over-union_non-maximum suppression(DIoU_NMS)algorithm is employed in lieu of the weighted non-maximum suppression algorithm,resulting in improved detection performance for intrusive targets.To accelerate detection speed,the model undergoes pruning based on the batch normalization(BN)layer,and TensorRT inference acceleration techniques are employed,culminating in the successful deployment of the algorithm on edge devices.The CBAM-YOLOv5 model exhibits a notable 2.1%enhancement in detection accuracy when evaluated on a self-constructed railway dataset,achieving 95.0%for mean average precision(mAP).Furthermore,the inference speed on edge devices attains a commendable 15 frame/s.
Author 石江
王尧
郭保青
白丁元
阮涛
AuthorAffiliation 国能朔黄铁路发展有限责任公司,北京 100080,中国%北京交通大学机械与电子控制工程学院,北京 100044,中国
AuthorAffiliation_xml – name: 国能朔黄铁路发展有限责任公司,北京 100080,中国%北京交通大学机械与电子控制工程学院,北京 100044,中国
Author_FL GUO Baoqing
SHI Jiang
WANG Yao
BAI Dingyuan
RUAN Tao
Author_FL_xml – sequence: 1
  fullname: SHI Jiang
– sequence: 2
  fullname: BAI Dingyuan
– sequence: 3
  fullname: GUO Baoqing
– sequence: 4
  fullname: WANG Yao
– sequence: 5
  fullname: RUAN Tao
Author_xml – sequence: 1
  fullname: 石江
– sequence: 2
  fullname: 白丁元
– sequence: 3
  fullname: 郭保青
– sequence: 4
  fullname: 王尧
– sequence: 5
  fullname: 阮涛
BookMark eNrjYmDJy89LZWBQMDTQMzQzNjXTz9IzNDAwtTc0NDLQMzIwMtEzACJDAxYGTpC4Lkicg4G3uDgzycDAzNzA2NzCjJPB7On8XU929T3bvOJZS__TrtnP5ux62rHt-ayWl5MbX2xf_7R16ZN9W5_PXvdsQfuL9W1PO1Y_m7bz2eapPAysaYk5xam8UJqbQdfNNcTZQ7c8MS8tMS89Piu_tCgPKBOfl5WRnVGSUlGRFJ8KcpWBCdBNxqSqBwDPzlhV
ClassificationCodes TN925
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16356/j.1005?1120.2024.04.010
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Attention Mechanism-Based Method for Intrusion Target Recognition in Railway
EndPage 554
ExternalDocumentID njhkhtdxxb_e202404010
GroupedDBID 2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CDYEO
PSX
TCJ
ID FETCH-wanfang_journals_njhkhtdxxb_e2024040103
ISSN 1005-1120
IngestDate Thu May 29 04:06:45 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords 通道注意力模块
铁路防护
边缘计算
edge computing
异物检测
空间注意力模块
spatial attention module
railway protection
channel attention module
foreign object detection
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-wanfang_journals_njhkhtdxxb_e2024040103
ParticipantIDs wanfang_journals_njhkhtdxxb_e202404010
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle 南京航空航天大学学报(英文版)
PublicationTitle_FL Transactions of Nanjing University of Aeronautics and Astronautics
PublicationYear 2024
Publisher 国能朔黄铁路发展有限责任公司,北京 100080,中国%北京交通大学机械与电子控制工程学院,北京 100044,中国
Publisher_xml – name: 国能朔黄铁路发展有限责任公司,北京 100080,中国%北京交通大学机械与电子控制工程学院,北京 100044,中国
SSID ssib006703786
ssib051367785
ssib022315922
ssib018830051
ssib000269172
ssib001051656
ssib001129202
Score 4.7336173
Snippet TN925; 异物入侵检测对于保障铁路运营安全十分重要,针对传统铁路综合视频监控效率低、检测精度差以及现有智能检测算法检测速度慢等问题,结合注意力机制和目标检测模型在边端进行入侵目标检测.在提高检测精度方面,将包括空间注意力模块和通道注意力模块的卷积注意力模块(Convolutional block...
SourceID wanfang
SourceType Aggregation Database
StartPage 541
Title 基于注意力机制的铁路入侵目标识别方法
URI https://d.wanfangdata.com.cn/periodical/njhkhtdxxb-e202404010
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na1NBEH-U9OJFFBU_Sw-uF0l9X7tv9yS7yQtFrBcr9FaS5sWgEEFTKL0JVYsHPYgerKAXQRDsoWgxB_-aJq3_hTOz23RrU4hCeAz7ZmZ_M7O8nd28nRcEV2WYQtrdkuUwXGqV01aTl2Ws6mXRrKuiGSUZj_C889wdMXsvvbXAFyZK295bS8vdxszS6shzJf8TVWiDuOIp2X-I7FApNAAN8YUrRBiuY8WY5ZypGjOa5SleZc5ywUzCtERCQp5YQx6pmTLYoirEDC2SGcHyjCmNbLliKoGkkuXQnjFtpTjTnDTnzHBiNkxTFzpkMkNm4JTCKdS2CwCgHAz7Ycv93JfYqkxlDq2uoAYU1KhcK8I2bIHeU2x0REZElWnhEQJNQ5DghAoKorhhJnJIEGTGpKJblme48UEG1RAmgo2APnQH0FQJqCS_kDtkcsACOhOEgSw1pqrkQ7Au9rVAQAAOCJsQLPB3WOKDvVWKoqHuJCpFgkKlKDDGHB8h6JiwIXzupMBaZIZfSMzgu4RQGvy5uFacOFgXW7riB-Z6REk-3SMXoKH7KGN-VGCfIKD48oweFbfhAIQRFKNPnH9z8nhKo4yYEbrAdivuRisny2kkaukc6zSTwaDzWGPSdKQx3pxMxXKjOPQnbVstzT2cUm8G5u6OTea4rVB-JE_Aqow2UQDlLKmh-hmMPdU9di9aH67D3nnQftjuNldWGosFcsLsh0c7J-Msi3gpmNTVudt3vT_whYr8I-kw-fmVCXGZE3uV9wTMvF4lx0hK_I7EcOqFJB7WHQeVNjlWWszog8ND97j3FNG0G9awm3-bRScTO616576XRM-fCk661e-0to-y08HEavtMIPofezu9V4OtL4O11_2XG4MPvf76j933a7_fPN3b3uw_-7zz6_vuxrfBpxd7m8_7618H734Ott6eDcq1fL4yW3Z9LbpH5pPFkT5MzgWlzqNOcT6YbhYxVpws4iKFrLmRNpSQzSiNl0QaFXVRXAiujafz4riMl4ITSNtN1ctBqft4ubgCy4xuY8qFdIq26f4AcObQbQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%B3%A8%E6%84%8F%E5%8A%9B%E6%9C%BA%E5%88%B6%E7%9A%84%E9%93%81%E8%B7%AF%E5%85%A5%E4%BE%B5%E7%9B%AE%E6%A0%87%E8%AF%86%E5%88%AB%E6%96%B9%E6%B3%95&rft.jtitle=%E5%8D%97%E4%BA%AC%E8%88%AA%E7%A9%BA%E8%88%AA%E5%A4%A9%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=%E7%9F%B3%E6%B1%9F&rft.au=%E7%99%BD%E4%B8%81%E5%85%83&rft.au=%E9%83%AD%E4%BF%9D%E9%9D%92&rft.au=%E7%8E%8B%E5%B0%A7&rft.date=2024&rft.pub=%E5%9B%BD%E8%83%BD%E6%9C%94%E9%BB%84%E9%93%81%E8%B7%AF%E5%8F%91%E5%B1%95%E6%9C%89%E9%99%90%E8%B4%A3%E4%BB%BB%E5%85%AC%E5%8F%B8%2C%E5%8C%97%E4%BA%AC+100080%2C%E4%B8%AD%E5%9B%BD%25%E5%8C%97%E4%BA%AC%E4%BA%A4%E9%80%9A%E5%A4%A7%E5%AD%A6%E6%9C%BA%E6%A2%B0%E4%B8%8E%E7%94%B5%E5%AD%90%E6%8E%A7%E5%88%B6%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%8C%97%E4%BA%AC+100044%2C%E4%B8%AD%E5%9B%BD&rft.issn=1005-1120&rft.volume=41&rft.issue=4&rft.spage=541&rft.epage=554&rft_id=info:doi/10.16356%2Fj.1005%3F1120.2024.04.010&rft.externalDocID=njhkhtdxxb_e202404010
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnjhkhtdxxb-e%2Fnjhkhtdxxb-e.jpg